光学 精密工程, 2017, 25 (12): 3120, 网络出版: 2018-01-10   

二维光电水平倾角测量系统

A two-dimensional photoelectric level inclination measuring system
作者单位
天津大学 精密测试技术及仪器国家重点实验室,天津 300072
摘要
针对高端装备制造中对大尺度机床误差测量与补偿的要求,本文基于光学自准直原理和液体表面反射原理,研制了一种二维光电水平倾角测量系统以实现对机床滚转角和俯仰角的测量。该系统使用半导体激光器发射激光,经光学自准直系统于待测硅油表面将被测倾角放大二倍。然后,由位置敏感探测器感测光斑位置变化,输出包含角度信息的光电流信号,并由低噪声四路同步微弱信号处理电路进行相同倍数的放大以减小误差。最终,由高速采集卡进行数据采集,经均值滤波、曲线拟合、解算处理后将其转化为倾角信息,从而实现二维角度测量。在光学平台进行了对比实验,结果表明:测量系统在-10~10 mm/m(约为-2 000″~2 000″)量程内,角度测量误差小于±0.050 mm/m(约为±10″),线性度优于0.25%,满足大尺度机床二维水平倾角检测对大量程、高精度、高稳定性的要求。
Abstract
For error measurement and error compensation of large-scale machine tools in high-end equipment manufacture, a two-dimensional photoelectric level inclination measuring system was established based on the principle of optical auto-collimation and liquid surface reflection to measure the roll angle and the pitch angle of a machine tool. Firstly, a laser diode was used as a source of the system, and the inclination was doubled on the surface of the silicone oil through an optical auto-collimation system. Then, spot position changes were detected by a position sensitive detector, the photoelectric signal containing angle information was output and the four low noise I-V conversion and consistent amplifying circuits were used to amplify signals and to reduce errors. Finally, a high-speed data acquisition system was used to acquire data and to convert them into inclination information by mean filtering, curve fitting and solution processing to accomplish two-dimensional inclination measuriement. A contrast experiment was performed on an optical platform. The results show that the angle errors are less than ±0.050 mm/m (about ±10″) and the linearity exceeds 0.25% within the system measuring range of -10-10 mm/m (about -2 000″-2 000″). It concludes that the system meets the requirements of large range, high precision and high stability and achieves two-dimensional level inclination measurement of large-scale machine tools rapidly.
参考文献

[1] CUI C X, FENG Q B, ZHANG B. Compensation for straightness measurement systematic errors in six degree-of-freedom motion error simultaneous measurement system[J]. Applied Optics, 2015, 54(11): 3122-3131.

[2] GAO W, HUANG P S, YAMADA T, et al.. A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers[J]. Precision Engineering, 2002, 26(4): 396-404.

[3] 刘先一, 周召发, 张志利, 等. 数字天顶仪中倾角仪参数的标定[J]. 光学 精密工程, 2016, 24(9): 2325-2331.

    LIU X Y, ZHOU ZH F, ZHANG ZH L, et al.. Calibration of inclinometer parameters in digital zenith camera[J]. Opt. Precision Eng., 2016, 24(9): 2325-2331. (in Chinese)

[4] 王向军, 曹雨, 周凯. 二维合作目标的单相机空间位姿测量方法[J]. 光学 精密工程, 2017, 25(1): 274-280.

    WANG X J, CAO Y, ZHOU K. Methods of monocular pose measurement based on planar objects[J]. Opt. Precision Eng., 2017, 25(1): 274-280. (in Chinese)

[5] FAN K C, WANG T H, LIN S Y, et al.. Design of a dual-axis optoelectronic level for precision angle measurements[J]. Measurement Science and Technology, 2011, 22(5): 055302.

[6] FAN K C, WANG T H, LIU Y C, et al.. Development of a dual-axis optoelectronic precision level[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8321:83213H.

[7] CHENG F, FAN K C. High-resolution angle measurement based on michelson interferometry[J]. Physics Procedia, 2011, 19: 3-8.

[8] WANG B G. Study on a new high accuracy dual-axis electronic level[J]. Acta Metrologica Sinica, 1998, 19(1): 22-27.

[9] 孙国燕, 高立民, 白建明, 等. 三维姿态角高精度测量装置[J]. 光学 精密工程, 2016, 24(5): 963-970.

    SUN G Y, GAO L M, BAI J M, et al.. High accuracy three-dimensional attitude angle measuring device[J]. Opt. Precision Eng., 2016, 24(5): 963-970. (in Chinese)

[10] 赵振庆, 叶东, 张鑫, 等. 改进的精密测角法标定面阵摄像机参数[J]. 光学 精密工程, 2016, 24(7): 1592-1599.

    ZHAO ZH Q, YE D, ZHANG X, et al.. Calibration of area-array camera parameters based on improved exact measuring angle method[J]. Opt. Precision Eng., 2016, 24(7): 1592-1599. (in Chinese)

[11] 丁健生, 史国权, 石广丰. 基于图像清晰度检测的光栅刻划平台调平装置[J]. 光学 精密工程, 2016, 24(4): 819-825.

    DING J SH, SHI G Q, SHI G F. Grating ruling platform leveling device based on image clarity measurement[J]. Opt. Precision Eng., 2016, 24(4): 819-825. (in Chinese)

[12] 杨中光, 周军, 黄河, 等. 偏振导航传感器测角误差分析与补偿[J]. 光学 精密工程, 2014, 22(6): 1424-1429.

    YANG ZH G, ZHOU J, HUANG H, et al.. Analysis and compensation of angle errors of polarization navigation sensors[J]. Opt. Precision Eng., 2014, 22(6): 1424-1429. (in Chinese)

[13] 黄梅珍. 位置敏感探测器的研究[D]. 杭州: 浙江大学, 2001.

    HUANG M ZH. Study on position sensitive detector[D]. Hangzhou: Zhejiang University, 2001. (in Chinese)

[14] 安毓英. 曾晓东. 光电探测原理[M]. 西安: 西安电子科技大学出版社, 2004.

    AN Y Y, ZENG X D. Principle of Photoelectric Detector[M]. Xi’an: Xidian University Press, 2004. (in Chinese)

王洪远, 段发阶, 蒋佳佳, 张聪. 二维光电水平倾角测量系统[J]. 光学 精密工程, 2017, 25(12): 3120. WANG Hong-yuan, DUAN Fa-jie, JIANG Jia-jia, ZHANG Cong. A two-dimensional photoelectric level inclination measuring system[J]. Optics and Precision Engineering, 2017, 25(12): 3120.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!