应用光学, 2011, 32 (4): 810, 网络出版: 2011-08-29   

物理参数变化对短脉冲激光激励温度场的影响

Influence of physical parameters on ultrashort pulse laser excitation temperature field
作者单位
江苏大学 理学院,江苏镇江212013
摘要
为研究多物理参数(耦合系数、电子热导率、电子热容、晶格热容)同时随温度变化对短脉冲激光辐照金属材料产生温度场分布的影响,基于双温耦合理论,建立了短脉冲激光辐照金属材料金的加热过程的有限元求解模型。在同时考虑脉冲激光的空间、时间分布和多参数同时随温度变化的情况下,得到短脉冲激光辐照金属材料金激励产生的温度场二维瞬态分布,并进一步比较了多物理参数同时随温度变化和采用室温物理参数两种情况下温度场分布的区别。数值结果表明:多物理参数同时随温度变化使电子温度和晶格温度的上升变快,最大值变大,而且使得材料中激光穿透直接辐照到的区域温度变高。
Abstract
Based on the two-temperature theory, a numerical model to solve the heating process in surface vicinity irradiated by ultrashort pulse laser is established to investigate the influence of temperature-dependent properties of material on temperature field in metal(Au) irradiated by ultrashort pulse laser. Taking account of the temperature-dependent properties of material which includes the electron-phonon coupling factor, electron thermal conductivity, electron heat capacity, lattice heat capacity, as well as the spatial and temporal shapes of the laser pulse, the transient temperature field irradiated by ultrashort pulse laser in metal(Au) is numerical simulated by the finite element method (FEM). The electron and lattice transient temperature distributions in the vicinity of laser-irradiated region are obtained. Moreover, the temperature fields obtained from considering and neglecting the temperature-dependent properties of material are compared. The numerical results indicate that the temperature-dependent properties of material make the electron and lattice temperatures rise faster, the temperature maximum and the irradiated become higher. This study establishes a theory basis for stress field and ultrasound field in metal generated by femto-second laser.
参考文献

[1] 王志琦. 飞秒激光技术的最新进展[J]. 应用光学, 1999, 20 (1): 17-19.

    WANG Zhi-qi. The new advance and development of femtosecond laser technology[J]. Journal of Applied Optics, 1999, 20 (1) : 17-19. (in Chinese with an English abstract)

[2] 刘青, 陈钧均, 郭丽丽. 超短激光脉冲对宽带光学物质的微加工[J]. 应用光学, 2006, 27(5): 428-432.

    LIU Qing, CHEN Jun-jun, GUO Li-li. Micromachining of wide-band optical materials with ultra-short laser pulses[J]. Journal of Applied Optics, 1999, 20 (1) : 428-432. (in Chinese with an English abstract)

[3] 刘国栋, 罗福, 王贵兵, 等. 飞秒激光辐照下单晶硅薄膜中超快能量输运的数值模拟[J]. 应用光学,2009,30(2): 325-329.

    LIU Guo-dong, LUO Fu, WANG Gui-bing, et al. Numerical simulation of ultrafast energy transport in monocrystalline silicon films under femtosecond laser irradiation[J]. Journal of Applied Optics, 2009, 30(2): 325-329. (in Chinese with an English abstract)

[4] EESLEY G L. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses [J]. Phys. Rev. B, 1986, 33 (4):2144-2151.

[5] CHICBKOV B N, MOMMA C, NOLTE S, et al. A tiinnermann. femtosescond, picosecond and nanosecond laser ablation of solids[J]. Appl. Phys., 1996, A63 (2):109-115.

[6] AL-NIMR M A, ARPACI V S. Picosecond thermal pulses in thin metal films[J]. Journal of Applied physics. 1999, 85(5):2517-2521.

[7] AL-NIMR M A, ARPACI V S. The thermal behavior of thin metal films in the hyperbolic two-step model [J]. Int. J. Heat and Mass Transfer. 1999, 43:2021-2028.

[8] AL-NIMR M A, HADER M, NAJI M. Use of the microscopic parabolic heat conduction model in place of the macroscopic model validation criterion under harmonic boundary heating[J]. Int. J. Heat and Mass Transfer., 2003, 46: 333-339.

[9] YANG J, ZHAO Y, ZHU X. Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion[J]. Appl. Phys. ,2007,A 89:571-578.

[10] YILBAS B S, SHUJA S Z. Laser shortpulse heating-variable properties case[J]. Physica, 2006, A364:87-102.

[11] ZHANG Y, CHEN J K. Melting and resolidification of gold film irradiated by nano- to femtosecond lasers[J]. Appl. Phys., 2007, A 88: 289-297.

[12] ELSAYED-ALI H E, NORRIS T B, PESSOT M A, et al. Time-resolved observation of electron-phonon relaxation in copper [J]. Phys. Rev. Lett., 1987, 58 (12):1212-1215.

[13] WANG J J, XU B Q, SHEN Z H, et al. Numerical simulation of thermoelastic stress field and laser ultrasound in transversely isotropic plate[J]. Japanese Journal of Applied Physics, 2008, 47(2): 956-963.

[14] XU B Q, SHEN Z H, LU J, et al. Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method[J]. International Journal of Heat and Mass Transfer, 2003, 46:4963-4968.

石云飞, 卢立中, 徐晨光, 徐桂东, 王纪俊, 许伯强. 物理参数变化对短脉冲激光激励温度场的影响[J]. 应用光学, 2011, 32(4): 810. SHI Yun-fei, LU Li-zhong, XU Chen-guang, XU Gui-dong, WANG Ji-jun, XU Bai-qiang. Influence of physical parameters on ultrashort pulse laser excitation temperature field[J]. Journal of Applied Optics, 2011, 32(4): 810.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!