光学学报, 2013, 33 (5): 0511001, 网络出版: 2013-01-14   

基于浮动支撑的620 mm薄反射镜面形主动校正

Active Surface-Profile Correction of 620 mm Thin-Mirror Based on Flotation Support
作者单位
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
对口径620 mm、厚18 mm的弯月形薄反射镜进行了面形误差的主动校正实验,通过浮动支撑方式保证了在校正过程中镜面空间位置不变。实验主镜的支撑结构由轴向36个主动支撑点和侧向6个被动支撑点组成,在轴向支撑点中对称选择中圈3个点作为虚拟硬点,通过调整其他促动器的支撑力保证虚拟硬点受力始终为零来实现浮动支撑。系统采用哈特曼波前传感器作为面形检测设备,采用最小二乘法计算校正力。实验中测出系统的像差校正能力,选择中低频的Zernike像差参与校正,并进行了不同俯仰角下面形的闭环与开环校正,实验结果表明通过浮动支撑方式有效地控制了校正过程中镜面的平移和倾斜。在不同俯仰角下通过闭环校正,均可将镜面面形误差均方根(RMS)的初始值(约0.6λ,λ=632.8 nm)校正到约λ/15,开环面形校正精度的RMS达到λ/10~λ/14。通过实验研究了俯仰角变化时的面形校正过程和校正力计算方法,并验证了采用浮动支撑方式控制镜面空间位置的可行性。
Abstract
For a meniscus mirror with 620 mm diameter and 18 mm thickness, active correction of surface-profile error is carried out. Through flotation support, the spatial position of the mirror is fixed. The support system of the mirror consists of 36 axial active supports and 6 lateral passive supports. Three points in the middle circle of axial supports are chosen symmetrically as dummy hard points, and the flotation support is achieved through adjusting the support forces of other actuators to null the dummy hard point forces at all times. The Hartmann wavefront sensor is used as testing equipment and the least square method is used to calculate the active corrective forces. In the experiment, the correction ability of the active supports is analyzed first and low-frequency Zernike terms are selected for correction finally. Then the close-loop and open-loop correction at different elevations is carried out, and the results show that through flotation support, the surface-profile error can be corrected effectively without piston and tilt. More than 0.6λ (λ=632.8 nm) root-mean-square (RMS) of surface-profile error of the initial state can be corrected to λ/15 at any elevation angles, and the RMS of correction precision of open-loop reaches λ/10~λ/14. Through the experiment the feasibility of correction process with varying elevation angle and the arithmetic of correction forces are discussed, and the control of mirror position through flotation support is approved.
参考文献

[1] 苏定强, 崔向群. 主动光学新一代大望远镜的关键技术[J]. 天文学进展, 1999, 17(1): 1~14

    Su Dingqiang, Cui Xiangqun. Active opticskey technology of the new generation telescopes [J]. Astronomy Evolvement, 1999, 17(1): 1~14

[2] Su Dingqiang, Jiang Shengtao, Zou Weiyao et al.. Experiment system of thin-mirror active optics[C]. SPIE, 1982, 2199: 609~621

[3] Su Dingqiang, Cui Xiangqun, Wang Yanan et al.. Large sky area multi-object fiber spectroscopic telescope (LAMOST) and its key technology[C]. SPIE, 1998, 3352: 76~90

[4] Cui Xiangqun, Su Dingqiang, Li Guoping et al.. Experiment system of LAMOST active optics[C]. SPIE, 2004, 5489: 974~985

[5] J. E. Kimbrell, D. Greenwald. AEOS 3.67 m telescope primary mirror active control system[C]. SPIE, 1998, 3352: 400~411

[6] H. M. Martin, S. P. Callahan, B. Cuerden et al.. Active supports and force optimization for the MMT primary mirror[C]. SPIE, 1998, 3352: 412~423

[7] T. A. Sebring, E. Dunham, R. L. Millis. The discovery channel telescope: a wide field telescope in northern Arizona[C]. SPIE, 2004, 5489: 658~666

[8] H. M. Martin, B. Cuerden, L. R. Dettman et al.. Active supports and force optimization for the first 8.4 m LBT mirror[C]. SPIE, 2004, 5489: 826~837

[9] M. Schneermann, X. Cui, D. Enard et al.. ESO VLT III: the support system of the primary mirrors[C]. SPIE, 1990, 1236: 920~928

[10] 李宏壮, 韩昌元, 刘欣悦 等. 基于球面的600 mm望远镜光学系统设计[J]. 光学技术, 2010, 36(4): 509~516

    Li Hongzhuang, Han Changyuan, Liu Xinyue et al.. Optical design of 600 mm diameter telescope based on spheric components[J]. Optical Technique, 2010, 36(4): 509~516

[11] 李宏壮, 林旭东, 刘欣悦 等. 400 mm薄镜面主动光学实验系统[J]. 光学 精密工程, 2009, 17(9): 2077~2083

    Li Hongzhuang, Lin Xudong, Liu Xinyue et al.. Experiment system of 400 mm thin mirror active optics[J]. Optics and Precision Engineering, 2009, 17(9): 2077~2083

[12] R. N. Wilson, F. Franza, L. Noethe. Active optics 1: a system for optimizing the optical quality and reducing the costs of large telescopes[J]. J. Modern Optics, 1987, 34(4): 485~509

[13] L. Noethe, T. Franza, P. Giordano et al.. Active optics 2: results of an experiment with a thin 1 m test mirror[J]. J. Modern Optics, 1988, 35(9): 1427~1457

[14] M. Iye, T. Noguchi, Y. Torii et al.. Active optics experiments with a 62 cm thin mirror[C]. SPIE, 1990, 1236: 929~939

[15] 吴小霞. 弯月薄镜的切向侧支撑设计研究[J]. 长春理工大学学报, 2011, 34(1): 53~56

    Wu Xiaoxia. Design research on tangent lateral support of thin meniscus mirror[J]. J. Changchun University of Science and Technology, 2011, 34(1): 53~56

[16] 李宏壮, 王志臣, 刘欣悦 等. Shack-Hartmann波前传感器在光学检测中的应用[J]. 应用光学, 2012, 33(1): 134~138

    Li Hongzhuang, Wang Zhichen, Liu Xinyue et al.. Application of Shack-Hartmann wavefront sensor in optical testing[J]. J. Applied Optics, 2012, 33(1): 134~138

[17] 张丽敏, 张斌, 杨飞 等. 主动光学系统力促动器的设计和测试[J]. 光学 精密工程, 2012, 20(1): 38~44

    Zhang Limin, Zhang Bin, Yang Fei et al.. Design and test of force actuator in active optical system[J]. Optics and Precision Engineering, 2012, 20(1): 38~44

[18] 唐金龙, 张俊, 王少白 等. 望远镜主镜气压力驱动器设计[J]. 光学学报, 2012, 32(6): 0623005

    Tang Jinlong, Zhang Jun, Wang Shaobai et al.. Pneumatic force actuator for telescope primary mirrors support[J]. Acta Optica Sinica, 2012, 32(6): 0623005

李宏壮, 张振铎, 王建立, 刘欣悦, 吴小霞, 张丽敏, 张斌, 王亮. 基于浮动支撑的620 mm薄反射镜面形主动校正[J]. 光学学报, 2013, 33(5): 0511001. Li Hongzhuang, Zhang Zhenduo, Wang Jianli, Liu Xinyue, Wu Xiaoxia, Zhang Limin, Zhang Bin, Wang Liang. Active Surface-Profile Correction of 620 mm Thin-Mirror Based on Flotation Support[J]. Acta Optica Sinica, 2013, 33(5): 0511001.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!