光电工程, 2014, 41 (6): 32, 网络出版: 2014-06-30   

TDLAS逃逸氨检测中温度影响的研究

Temperature Influence in the TDLAS Detection of Escaping Ammonia
作者单位
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
摘要
可调谐半导体激光吸收光谱技术(TDLAS)为逃逸氨的现场抽取式的检测提供了可靠的技术手段, 现场环境中温度对二次谐波信号影响非常大, 必须要对检测的结果进行温度的修正。当温度从 25℃变化到 250℃时, 在 Herriott样品池中对 100×10-6的 NH3进行检测, 得到二次谐波光谱图, 结果显示二次谐波信号的幅度随温度的升高而减小, 线宽趋于平缓。当压力从 0 kPa变化到 100 kPa时, 二次谐波的信号峰值随着压力增加而减小, 线宽趋于平缓。根据上述实验结果, 给出了温度修正的公式, 通过对不同温度下 50×10-6浓度的 NH3进行修正, 来评价公式的可靠性, 修正后的最高误差为 5.1%, 极大地提高了测量的精度, 使系统能够适应高温环境下在线抽取式监测需求。
Abstract
Tunable Diode Laser Absorption Spectroscopy (TDLAS) provides a reliable means of on-line detection technology for sampling style escaping ammonia. Since the temperature had great effects on the 2f signal in the field environment, the results must be modified. When the temperature changed from 25 ℃ to 250 ℃, the concentrations of 100 × 10-6 NH3 were detected in the Herriott cell and the 2f signals spectrogram were obtained. The results show that the 2f signal intensity decreases and the curve smooth with the temperature rising. When the pressure changed from 20kPa to 100kPa, the results show that the 2f signal intensity decreases and the curve smooth with the pressure rising. According to the above results, the experience formula of temperature correction was raised. The formula reliability was evaluated through the correction of the 50 × 10-6 concentration NH3 in different temperatures, and the error correction was within 5.1%, which greatly improved the precision of the detection. The results show that the system is suitable for online sampling style monitoring in high temperature environment.
参考文献

[1] 张志荣, 董凤忠, 吴边, 等. 基于 TDLAS技术的工业环境中 HF气体在线监测 [J].光电子 ·激光, 2011, 22(11):1691–1694. ZHANG Zhirong, DONG Fengzhong, WU Bian, et al. In-situ Measurement of HF Gas in Industrial Situation based on TDLAS Technology [J]. Journal of Optoelectronics Laser, 2011, 22(11):1691–1694.

[2] CAI Tingdong, JIA Hui, WANG Guishi, et al. A Sensor for Measurements of Temperature and Water Concentration Using a Single Tunable Diode Laser Near 1.4 μm [J]. Sens. Actuators A Phys(S0924-4247), 2009, 152(1):5–12.

[3] Rieker G B, Jeffries J B, Hanson R K, et al. Diode Laser-based Detection of Combustor Instabilities with Application to a Scramjet Engine [J]. Proc. Combust. Inst(S1540-7489), 2009, 32(1):831–838.

[4] Sur R, Boucher T J, Renfro M W, et al. In Situ Measurements of Water Vapor Partial Pressure and Temperature Dynamics in a PEM Fuel Cell [J]. J. Electrochem. Soc (S0013-4651), 2010, 157(1):45–53.

[5] 宋雪梅, 刘建国, 张玉钧, 等. 可调谐半导体激光吸收光谱遥测二氧化碳通量的研究 [J].光谱学与光谱分析, 2011, 31(3): 803–807. SONG Xuemei, LIU Jianguo, ZHANG Yujun, et al. Study of Remote Sensing the Flux of Carbon Dioxide Gas with Tunable Diode Laser Absorption Spectroscopy [J]. Spectroscopy and Spectral Analysis, 2011, 31(3):803–807.

[6] 张志荣, 董凤忠, 涂郭结, 等. 可调谐激光痕量气体检测中的数字滤波技术的优选 [J].光电子 ·激光, 2010, 21(11): 1672–1676. ZHANG Zhirong, DONG Fengzhong, TU Guojie, et al. The Selection of Digital Filtering Techniquein Trace Gas Concentration Measurements with Tunable Diode Laser Absorption Spectroscopy [J]. Journal of Optoelectronics Laser, 2010, 21(11):1672–1676.

[7] CAO Jianian, ZHANG Keke, WANG Zhuo. New Scheme of Methane Concentration Detection with Tunable Diode Laser Absorption Spectroscopy [J]. Chinese Journal of Scientific Instrument(S0254-3087), 2010, 31(11):2597–2602.

[8] WANG Liming, ZHANG Yujun, HE Ying, et al. A Laser Diode Sensor for in-situ Monitoring of H2S in the Desulfurizing Device [C]// 2011 International Conference on Electronics and Optoelectronics (ICEOE 2011), Dalian, Liaoning, China, July 29-31, 2011, 4(2):276–279.

[9] Farooq A, Jeffries J B, Hanson R K. Measurements of CO2 Concentration and Temperature at High Pressures Using 1f-normalized Wavelength Modulation Spectroscopy with Second Harmonic Detection Near 2.7 μm [J]. Applied Optics(S0003-6935), 2009, 48(35):6740–6753.

[10] Kluczynski P, Lundqvist S, Belahsene S, et al. Tunable-diode-laser Spectroscopy of C2H2 Using a 3.03 μm GaInAsSb/AlGaInAsSb Distributed-feedback Laser [J]. Optics Letters (S0146-9592), 2009, 34(24):3767–3769.

[11] Webber M E, Baer D S, Hanson R K. Ammonia Monitoring Near 1.5μm with Diode-Laser Absorption Sensors [J]. Applied Optics(S0003-6935), 2001, 40(12):2031–2042.

[12] 邹得宝, 陈文亮, 杜振辉, 等. 数字滤波方法在 TDLAS逃逸氨检测中的选用 [J].光谱学与光谱分析, 2012, 32(9): 2322–2326. ZOU Debao, CHEN Wenliang, DU Zhenhui, et al. Selection of Digital Filtering in the Escaping Ammonia Monitoring with TDLAS [J]. Spectroscopy and Spectral Analysis, 2012, 32(9):2322–2326.

[13] WANG Fei, HUANG Qunxing, LI Ning, et al. The Tunable Diode Laser Absorption Spectroscopy for Measurement of NH3 with Particles [J]. Acta Physica Sinica(S1000-3290), 2007, 56(7):3867–3872.

[14] SHU Xiaowen, ZHANG Yujun, KAN Ruifeng, et al. An Investigation of Temperature Compensation of HCL Gas Online Monitoring Based on TDLAS Method [J]. Spectroscopy and Spectral Analysis(S1000-0593), 2010, 30(15):1352–1356.

[15] PENG Zhimin, DING Yanjun, CHE Lu, et al. Calibration-free Wavelength Modulated TDLAS under High Absorbance Conditions [J]. Optics Express(S1094-4087), 2011, 19(23):23104–23110.

[16] Ricardo C, Florian V E, Darrin P L, et al. Ammonia Detection by Use of Near-Infrared Diode-Laser-Based Overtone Spectroscopy [J]. Applied Optics(S0003-6935), 2001, 40(24):4387–4394.

[17] Herriot D R, Schulte H J. Folded Optical Delay Lines [J]. Applied Optics (S0003-6935), 1965, 4:883–889.

张增福, 邹得宝, 陈文亮, 赵会娟, 徐可欣. TDLAS逃逸氨检测中温度影响的研究[J]. 光电工程, 2014, 41(6): 32. ZHANG Zengfu, ZOU Debao, CHEN Wenliang, ZHAO Huijuan, XU Kexin. Temperature Influence in the TDLAS Detection of Escaping Ammonia[J]. Opto-Electronic Engineering, 2014, 41(6): 32.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!