中国激光, 2009, 36 (8): 2046, 网络出版: 2009-08-13   

利用改进的分步傅里叶算法模拟超连续谱的产生

Simulation of Supercontinuum Generation by Using Modified Split-Step Fourier Algorithm
作者单位
1 西北工业大学理学院光信息科学与技术研究所, 陕西省光信息技术重点实验室, 陕西 西安 710072
2 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西 西安 710068
摘要
为提高模拟超连续谱(SC)产生的精度, 在不增加计算量的情况下对传统分步傅里叶算法作了一定的改进。传统分步傅里叶算法只考虑初始脉冲中心频率对应的色散系数, 而超连续谱的光谱范围很大, 当色散系数随波长变化较大时, 传统算法会存在较大误差。改进的算法将整个脉冲包络看成由多个单一频率分量组成, 对各频率分量分别处理, 从而将整个脉冲包络内所有频率分量的色散系数都考虑在内。将改进算法分别用于模拟色散曲线只包含一个和两个零色散点的光子晶体光纤(PCF)中超连续谱的产生, 并与传统算法的模拟结果相比较, 结果表明,改进算法在模拟单零色散光子晶体光纤中超连续谱产生时优势不明显, 但对模拟双零色散光子晶体光纤中超连续谱产生却有一定优势。
Abstract
In order to improve the precision of simulated supercontinuum (SC) generation, the split-step Fourier algorithm is modified without increasing the computation amount. Traditional algorithm only refers to the dispersion coefficient of the central frequency. Due to the wide range of the supercontinuum, the error of the result would be big by using the traditional algorithm if the slope of the dispersion coefficient is large. According to the modified algorithm, the pulse could be regarded as the combination of many elements each with only one frequency. The elements with different frequencies could be processed seperately by using the modified algorithm, so the dispersion coefficients of all the frequencies could be refered to. The modified algorithm is applied in simulating the supercontinuum generation in the photonic crystal fibers with one and two zero dispersion wavelengths. And the results are compared with those of traditional algorithm. The simulation results show that the superiority of the modified split-step Fourier algorithm is not obvious in the photonic crystal fibers (PCF) with only one zero dispersion wavelength, but having certain superiorities in simulating the supercontinuum generation of the photonic crystal fibers with two zero dispersion wavelengths.
参考文献

[1] . C. Knight, T. A. Birks, P. St. J. Russell et al.. All silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549.

[2] . Saitoh, M. Koshiba. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Opt. Express, 2004, 12(10): 2027-2032.

[3] . A. Cumberland, J. C. Travers, S. V. Popov et al.. 29 W high power CW supercontinuum source[J]. Opt. Express, 2008, 16(8): 5954-5962.

[4] . Genty, M. Lehtonen, H. Ludvigsen. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers[J]. Opt. Express, 2002, 10(20): 1083-1098.

[5] 韩文. 光子晶体光纤中超连续谱产生的机制及控制研究[D]. 长沙:湖南大学, 2006. 1~8

    Han Wen. Study of the mechanism and control of supercontinuum generation in photonic crystal fibers[D]. Changsha: Hunan University, 2006. 1~8

[6] . M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber[J]. Rev. Mod. Phys., 2006, 78(4): 1135-1184.

[7] . Schreiber, T. V. Andersen, D. Schimpf et al.. Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths[J]. Opt. Express, 2005, 13(23): 9556-9569.

[8] 张军,魏志义,王兆华 等. 利用光子晶体光纤产生超连续飞秒激光光谱[J]. 光学学报, 2003, 23(4):511~512

    Zhang Jun, Wei Zhiyi, Wang Zhaohua et al.. Supercontinuum generation in photonic crystal fiber by femtosecond pulses laser[J]. Acta Optica Sinica, 2003, 23(4):511~512

[9] 胡明列, 王清月, 栗岩峰 等. 非均匀微结构光纤中超连续光的产生和传输[J]. 中国激光, 2005, 31(5):567~569

    Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Supercontinuum generation and transmission in a random distorted microstructure fiber[J]. Chinese J. Lasers, 2004, 31(5) :567~569

[10] . Genty, M. Lehtonen, H. Ludvigsen. Enhanced bandwidth of supercontinuum generated in microstructured fibers[J]. Opt. Express, 2004, 12(15): 3471-3480.

[11] . 微结构光纤中超短激光脉冲传输的数值模拟[J]. 物理学报, 2005, 54(4): 1599-1606.

    . . Numerical simulation on ultrashort laser pulses propagating in microstructure fibers[J]. Acta Physica Sinica, 2005, 54(4): 1599-1606.

[12] 阿戈沃. 非线性光纤光学[M]. 贾东方, 余震虹, 谈斌等译. 北京:电子工业出版社, 2002.27~35

    G. P. Agrawal. Nonlinear Fiber Optics[M]. Jia Dongfang, Yu Zhenhong, Tan Bing et al.. Transl.. Beijing: Publishing House of Electronics Industry, 2002. 27~35

[13] 石顺祥, 陈果夫, 赵卫 等. 非线性光学[M]. 西安:西安电子科技大学出版社, 2003.414~417

    Shi Shunxiang, Chen Guofu, Zhao Wei et al.. Nonlinear optics[M]. Xi’an: Xidian University Press, 2003. 414~417

[14] 吴铭, 刘海荣, 黄德修. 高非线性光子晶体光纤色散特性的研究[J]. 光学学报, 2008, 28(3):539~542

    Wu Ming, Liu Hairong, Huang Dexiu. Dispersion property in highly nonlinear photonic crystal fiber[J]. Acta Optica Sinica, 2008, 28(3) :539~542

[15] 胡广书. 数字信号处理理论、算法与实现[M]. 北京:清华大学出版社, 2003.117

    Hu Guangshu. Digital Signal Processing Theory, Algorithms and Realization[M]. Beijing:Tsinghua University Press, 2003. 117

[16] 张晓娟. 光子晶体光纤传输特性的数值模拟分析[D]. 西安: 西北工业大学,2007. 10~14

    Zhang Xiaojuan. Numerical simulation and analysis of photonic crystal fiber propagation characteristics[D]. Xi’an: Northwestern Polytechnical University, 2007. 10~14

[17] . Zhang, S. Yu, J. Zhang et al.. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths[J]. Opt. Express, 2007, 15(3): 1147-1154.

崔秀艳, 赵建林, 杨德兴, 李鹏, 赵卫, 王屹山. 利用改进的分步傅里叶算法模拟超连续谱的产生[J]. 中国激光, 2009, 36(8): 2046. Cui Xiuyan, Zhao Jianlin, Yang Dexing, Li Peng, Zhao Wei, Wang Yishan. Simulation of Supercontinuum Generation by Using Modified Split-Step Fourier Algorithm[J]. Chinese Journal of Lasers, 2009, 36(8): 2046.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!