激光与光电子学进展, 2015, 52 (2): 020006, 网络出版: 2015-01-29   

小型化光声光谱气体传感器研究进展 下载: 1423次

Recent Advance in Miniaturization of Photo-Acoustic Spectroscopy Gas Sensor
作者单位
北京航天控制仪器研究所, 北京 100094
摘要
光声光谱技术用于探测痕量气体的浓度,小型化集成的光声光谱气体传感器利于实现便携式在线检测。光声探测作为光声光谱的关键技术决定了系统的灵敏度和体积,小型化的光声探测系统的核心是微型吸收单元和声光谐振器。总结了近年来光声光谱气体传感器在小型化与集成方面的进展,分析并比较三种光源、微型吸收单元以及小型化声光谐振器的研制进展以及各自利弊。介绍了北京航天控制仪器研究所近年的研究成果,采用共振管增强的石英音叉作为紧凑型封装的声光测量器件,通过铥钬共掺的光纤放大器实现波长为2 mm,功率为200 mW 的激光输出,提高了测量精度,实现对氨气和二氧化碳的同时测量。
Abstract
Photo-acoustic spectroscopy can be used to detect trace concentration gas. The total size can be made small, making it possible to realize portable in situ measurement. The critical technology of photo-acoustic detection is the miniaturization of absorption cell and microphone, which determines the sensitivity and volume of the system. Recent progress of photo-acoustic spectroscopy detection technology in miniaturization and integration is summarized. Three kinds of light sources, absorption cells and photo-acoustic resonators are analyzed and compared, respectively. Meanwhile, the latest progress of Beijing Institute of Aerospace Control Devices is also provided. The quartz tuning fork enhanced photo-acoustic spectroscopy technique is taken to realize miniaturization of absorption cell and photo-acoustic resonator. A compact packaged quartz tuning fork coupling with fiber is demonstrated. A Tm/Ho doped fiber amplifier is used to realize the 2 mm wavelength output with the power of 200 mW, and ammonia and carbon dioxide can be measured simultaneously.
参考文献

[1] M W Sigrist. Trace gas monitoring by laser-photoacoustic spectroscopy [J]. Infrared Phys Technol, 1994, 36(1): 415-425.

[2] 傅先进, 杨乐. 基于无线传感网络的可佩带式生命体征监测系统设计[J]. 导航与控制, 2014, 13(2): 23-27.

    Fu Xianjin, Yang Le. Design of wearable vital signs monitoring system based on wireless sensor network [J]. Navigation and Control, 2014, 13(2): 23-27.

[3] A A Kosterev, T F Tittel, D V Serebryakov, et al.. Application of quartz tuning fork in spectroscopic gas sensing [J]. Rev Sci Instrum, 2005, 76: 043105.

[4] L Dong, A A Kosterev, T F Tittel. QEPAS spetrophones: Design, optimization and performance [J]. Appl Phys B, 2010, 100(3): 627-635.

[5] R Levicki, G Wysocki, A A Kosterev, et al.. Carbon dioxide and ammonia detection using 2 mm diode laser based quartz-enhanced photoacoustic spectroscopy [J]. Appl Phys B, 2007, 87(1): 157-162.

[6] N Petra, J Zweck, A A Kosterev, et al.. Theoretical analysis of quartz-enhanced photoacoustic spectroscopy sensor [J]. Appl Phys B, 2009, 94(4): 673-680.

[7] G Wysocki, A A Kosterev, T F Tittel. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at l=2 mm [J]. Appl Phys B, 2006, 85(2-3): 301-306.

[8] 陈昊, 李剑锋, 欧中华, 等. 中红外光纤激光器的研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111402.

    Chen Hao, Li Jianfeng, Ou Zhonghua, et al.. Progress of mid-infrared fiber lasers [J]. Laser & Optoelectronics Progress, 2011, 48(11): 111402.

[9] 陈乐君, 刘玉玲, 余飞鸿. 光声光谱气体探测器的新进展[J]. 光学仪器, 2006, 28(5): 86-91.

    Chen Lejun, Liu Yuling, Yu Feihong. New research progress of photoacoustic spectroscopy gas detector [J]. Optical Instruments, 2006, 28(5): 86-91.

[10] 田莉, 朱永, 韦玮, 等. 全光式石英增强光声光谱系统光纤法珀解调技术研究[J]. 激光与光电子学进展, 2014, 51(6): 060602.

    Tian Li, Zhu Yong, Wei Wei, et al.. Research on the fiber Fabry-Perot demodulation technique based on all-optical quartz enhanced photoacoustic spectroscopy system [J]. Laser & Optoelectronics Progress, 2014, 51(6): 060602.

[11] 董磊, 马维光, 张雷, 等. 基于脉冲石英增强光声光谱的中红外超高灵敏度CO 探测[J]. 光学学报, 2014, 34(1): 0130002.

    Dong Lei, Ma Weiguang, Zhang Lei, et al.. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy [J]. Acta Optica Sinica, 2014, 34(1): 0130002.

[12] 郑德忠, 赵南. 新型光声腔的设计及实验分析[J].中国激光, 2014, 41(4): 0415002.

    Zheng Dezhong, Zhao Nan. Design and experimental analysis of new photoacoustic cell [J]. Chinese J Lasers, 2014, 41(4): 0415002.

[13] P M Pellegrino, R G Polcawich. Advancement of a MEMS photoacoustic chemical sensor [C]. SPIE, 2003, 5085: 52-63.

[14] P Pellegrino, R Polcawich, S L Firebaugh, et al.. Miniature photoacoustic chemical sensor using micro-electromechanical structures [C]. SPIE, 2004 , 5416: 42-53.

[15] D A Heaps, P Pellegrino. Examination of a quantum cascade laser source for a MEMS-scale photoacoustic chemical sensor [C]. SPIE, 2006, 6218: 621805.

[16] D A Heaps, P Pellegrino. Investigations of intraband quantum cascade laser source for a MEMS-scale photoacoustic sensor [C]. SPIE, 2007 , 6554: 65540F.

[17] 王海宾, 刘晔, 王进祖, 等. 光纤型空芯光子晶体光纤低压CO2气体腔的制备[J]. 光学学报, 2013, 33(7): 0706007.

    Wang Haibin, Liu Ye, Wang Jinzu, et al.. Preparation of all-fiber low pressure CO2 gas cell based on hollow-core photonic crystal fiber [J]. Acta Optica Sinica, 2013, 33(7): 0706007.

[18] 黄崇德, 陈迪俊, 蔡海文, 等. 空芯光子晶体光纤吸收池的激光稳频技术[J]. 中国激光, 2014, 41(8): 0802006.

    Huang Chongde, Chen Dijun, Cai Haiwen, et al.. Laser frequency stabilization technology based on hollow-core photonics crystal fiber gas cell [J]. Chinese J Lasers, 2014, 41(8): 0802006.

[19] 李晶, 王巍, 王学锋, 等. 光子晶体光纤陀螺仪关键技术及进展[J]. 导航与控制, 2014, 13(1): 51-56.

    Li Jing, Wang Wei, Wang Xuefeng, et al.. Pivotal technology and development of photonic crystal fiber-optic gyroscope [J]. Navigation and Control, 2014, 13(1): 51-56.

[20] C Wang, W Jin, J Ma, et al.. Suspended core photonic microcells for sensing and device applications [J]. Opt Lett, 2013, 38(11): 1881-1883.

[21] Y Cao, W Jin, H L Ho, et al.. Miniature fiber-tip photoacoustic spectrometer for trace gas detection [J]. Opt Lett, 2013, 38(4): 434-436.

[22] 于清旭, 贾春燕. 膜片式微型F-P 腔光纤压力传感器[J]. 光学 精密工程, 2009, 17(12): 2887-2892.

    Yu Qingxu, Jia Chunyan. Diaphragm based miniature fiber optic pressure sensor with FP cavity [J]. Optics and Precision Engineering, 2009, 17(12): 2887-2892.

[23] V Koskinen, J Fosen, K Roth, et al.. Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source [J]. Appl Phys B, 2007, 86(3): 451-454.

[24] J Fosen, V Koskinen, K Roth, et al.. Dual cantilever enhanced photoacoustic detector with pulsed broadband IR-source [J]. Vib Spectrosc, 2009, 50(2): 214-217.

[25] S L Firebaugh, K F Jesen, M A Schmidt. Miniaturization and integration of photoacoustic detection [J]. J Appl Phys, 2002, 92(3): 1555-1563.

[26] S L Firebaugh, K F Jensen, M A Schmidt. Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system [J]. JMEMS, 2001, 10(12): 232-237.

[27] 胡雅君, 赵学玒, 张锐, 等. 波长调制技术中光强调制对二次谐波线型的影响研究[J]. 光学学报, 2013, 33(11):1130002.

    Hu Yajun, Zhao Xuehong, Zhang Rui, et al.. Research on the effect of light intensity modulation on the line shape of the second harmonic in the wavelength modulation technology [J]. Acta Optica Sinica, 2013, 33(11): 1130002.

姜萌, 冯巧玲, 魏宇峰, 王聪颖, 梁同利. 小型化光声光谱气体传感器研究进展[J]. 激光与光电子学进展, 2015, 52(2): 020006. Jiang Meng, Feng Qiaoling, Wei Yufeng, Wang Congying, Liang Tongli. Recent Advance in Miniaturization of Photo-Acoustic Spectroscopy Gas Sensor[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020006.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!