红外与毫米波学报, 2014, 33 (3): 237, 网络出版: 2014-06-30   

THz时域光谱诊断激光等离子体密度和碰撞频率

Diagnosis plasma density and collisions by terahertz time-domain spectroscopy
作者单位
上海交通大学 物理系 激光等离子体教育部重点实验室,上海200240
摘要
从电子在THz波电场中的运动方程出发,讨论了THz波在等离子体中的传播规律.从而可以得到由等离子体电子密度和碰撞频率决定的THz波的复折射率.该复折射率决定了THz波在等离子体中的传播,即THz脉冲相位和振幅变化.THz时域光谱系统可以测量THz波传播的相位和振幅,因此可以利用THz时域光谱来诊断等离子体密度和碰撞频率.由于受到等离子体色散关系的限制,该方法测量的等离子体密度有一定范围.在等离子体电子密度位于1012~1016/cm3之间内,该方法可以得到较好的应用.
Abstract
Based on the electron motion equation, the propagation of terahertz (THz) wave in plasma is studied. The complex refractive index of THz wave is determined by the plasma electron density and collisions. It decides the propagation of the THz in plasma, which means the change of the THz wave phase and amplitude. THz time-domain spectroscopy system can measure the THz wave phase and amplitude, so it can be used to diagnose the electron density and collisions. Limited by the dispersion relation in plasma, there is a limitation for this method in the electron density measurement. The diagnosis works well for plasmas with density in the range 1012~1016/cm3.
参考文献

[1] Williams G. Filling the THz gap- high power sources and application [J]. Reports on Progress in Physics, 2006, 69(2): 301326.

[2] Reimann K. Table top sources of ultrashort THz pulses [J]. Reports on Progress in Physics, 2007, 70(10): 15971632.

[3] Ferguson B, Zhang Xi-Cheng. Materials for terahertz science and technology [J]. Nature Materials, 2002, 1: 2633.

[4] Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy [J]. Review of Modern Physics, 2011, 83(2): 543585.

[5] Chan W, Deibel J, Mittleman D. Imaging with terahertz radiation [J]. Reports on Progress in Physics, 2007, 70(8): 13251379.

[6] Jepsen P, Cooke D, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications [J]. Laser Photonics Review, 2011, 5(1): 124166.

[7] XUE Bing, FAN Wen-Hui, LIU Hai-Liang, et al. THz generation and detection based on the technology of ultra-fast femtosecond laser [J]. Acta Photonica Sinica( 薛冰, 范文慧, 刘海亮,等. 基于超快飞秒激光技术的太赫兹波产生和探测光子学报)2008, 37(s2): 15.

[8] HU Ying, ZHANG Chun-Lin, SHEN Jing-Ling, et al. Time-domain terahertz spectroscopy of (100) MgO and (100) LaAlO3 [J]. Acta Physica Sinica,(胡颖, 张存林, 沈京玲,等. (100)MgO 和(100)LaAlO3g高温超导基片材料THz时域光谱研究 . 物理学报),2004, 53(6): 1772.

[9] ZHAO Hui, ZHAO Kun, TIAN Lu, et al. Quantitative determination of sulfur content in diesel using THz-TDS technology [J]. J. Infrared Millim.Waves.(赵卉, 赵昆, 田璐,等. 运用太赫兹时域光谱技术定量分析柴油的含硫量 . 红外与毫米波学报)2012, 31(5): 399402.

[10] Jamison S, Shen Jingling, Jones D, et al. Plasma characterization with terahertz time-domain measurements [J]. Journal of Applied Physics 2003, 93(7): 43344336.

[11] Kolner B, Conklin P, Buckles R, et al. Time-resolved pulsed-plasma characterization using broadband terahertz pulses correlated with fluorescence imaging [J]. Applied Physics Letters, 2005, 87(15): 151501.

[12] Kampfrath T, Gericke D, Perfetti L, et al. Long- and short-lived electrons with anomalously high collision rates in laser-ionized gases [J]. Physical Review E, 2007, 76(6): 066401.

[13] Mics Z, Puzel P, Jungwirth P, et al. Photoionization of atmospheric gases studied by time-resolved terahertz spectroscopy [J]. Chemical Physics Letters, 2008, 465: 2024.

[14] Kolner B, Buckles A, Conlin P, et al. Plasma characterization with terahertz pulses [J]. IEEE Journal of Selected Topics Quantum Electronics, 2008, 14(2): 505512.

杨楠, 杜海伟. THz时域光谱诊断激光等离子体密度和碰撞频率[J]. 红外与毫米波学报, 2014, 33(3): 237. YANG Nan, DU Hai-Wei. Diagnosis plasma density and collisions by terahertz time-domain spectroscopy[J]. Journal of Infrared and Millimeter Waves, 2014, 33(3): 237.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!