无机材料学报, 2020, 35 (4): 431, 网络出版: 2021-03-01  

BaTiO3-ZnNb2O6陶瓷介电及储能性能研究

Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics
作者单位
1 陕西科技大学 材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021
2 咸阳陶瓷研究设计院有限公司, 咸阳 712000
摘要
采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (简称BTZN)陶瓷, 研究了BTZN陶瓷的烧结温度、结构、介电性能和铁电性能。BTZN陶瓷烧结温度随着ZnNb2O6含量增加逐渐降低。XRD结果表明当ZnNb2O6含量达到3mol%时出现第二相Ba2Ti5O12。介电测试结果表明随ZnNb2O6含量的增加, BTZN陶瓷介电常数逐渐减小, 而介电常数的频率稳定性逐渐增强。介电温谱表明所有BTZN陶瓷均符合X8R电容器标准。BTZN陶瓷的极化强度值随着ZnNb2O6含量的增加逐渐降低。当x=4mol%时, BTZN陶瓷获得240 kV/cm的击穿电场和1.22 J/cm 3的可释放能量密度。
Abstract
(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (BTZN) ceramics were synthesized by solid state method. The sintering temperature, structure, dielectric property and ferroelectric property of BTZN ceramics were systematically investigated. The sintering temperature of BTZN ceramics decreased with increasing ZnNb2O6 content. XRD results show that the second phase Ba2Ti5O12 was observed when the content of ZnNb2O6 reached 3mol%. The dielectric measurements result showed that with increasing ZnNb2O6 content, the dielectric constant of BTZN ceramics decreased gradually, while the frequency stability of dielectric constant increased gradually. The temperature dependence of dielectric constant results showed that all BTZN ceramics met the characteristics of X8R capacitors. Polarization values of BTZN ceramics decreased with increasing ZnNb2O6 content. The dielectric breakdown strength of 240 kV/cm and a recoverable energy density of 1.22 J/cm 3 were achieved in the sample of x=4mol%.

钛酸钡(BaTiO3)是一种典型的ABO3型钙钛矿结构的铁电体材料, 因其优良的介电、压电以及铁电性能[1]被广泛应用于多层陶瓷电容器[2], 铁电存储器[3], 传感器及非线性电光器件等[4,5]。BaTiO3 (BT)陶瓷介电常数(εr)非常高, 室温为1500~2000 ℃, 在居里温度(TC)附近高达10000 ℃以上[6], εr与温度呈非线性关系, 导致εr随温度变化率较大, 此外εr对电场、频率和压力等条件变化也非常敏感。BT陶瓷介电损耗(tanδ >0.05)相对较高。BT陶瓷饱和极化强度值(Ps >27 μC/cm2)高[7], 而剩余极化强度值(Pr > 14.7 μC/cm2)也很高[8]。BT陶瓷击穿电场(BDS< 100 kV/cm)较低[9]

εr和大Ps使BT陶瓷成为一种非常有潜力的无铅陶瓷储能电容器材料[10,11,12], 可应用于激光脉冲**和混合电动车等领域[13,14,15,16,17,18,19]。但高Pr和低BDS导致BT陶瓷储能性能并不良好[20,21,22]。近年来许多研究人员尝试在BT的A位和B位引入离子合成BT基弛豫铁电体陶瓷从而降低Pr: Huang等[23]用Sol-Gel法合成Ba0.4Sr0.6TiO3陶瓷, 在240 kV/cm电场强度下获得1.23 J/cm3能量存储密度(W), 和94.52%能量存储效率(η)。Puli等[24]用固相法制备0.85Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3陶瓷, 在170 kV/cm下获得0.94 J/cm3W和94.52 %的η。Sun等[25]用固相法合成Ba1-xSm2x/3Zr0.15Ti0.85O3陶瓷, 当x=0.003获得1.15 J/cm3可释放能量密度(Wrec)和92%的η。此外, 在BT中加入Bi基化合物合成BT-Bi基弛豫铁电体陶瓷成为近几年研究热点: Wang等[26]用固相法合成(1-x)BaTiO3-xBi(Mg2/3Nb1/3)O3陶瓷, 当x=0.1在143.5 kV/cm下获得1.13 J/cm3Wrec和92.4%的η。Hu等[27]用固相法合成0.88BaTiO3- 0.12Bi(Mg1/2Ti1/2)O3陶瓷, 在224 kV/cm下获得1.81 J/cm3Wrec和88%的η。Yuan等[28]用固相法合成0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3陶瓷, 在264 kV/cm下获得2.46 J/cm3Wrec和86.8%的η。Li等[29]用固相法合成0.88BaTiO3-0.12Bi(Li0.5Nb0.5)O3陶瓷, 在270 kV/cm下获得2.03 J/cm3Wrec和88%的η。上述BT基和BT-Bi基弛豫铁电体陶瓷Pr均随着离子化合物含量增加逐渐减小, 储能性能得到明显改善, 然而Ps急剧降低成为储能性能提高的瓶颈。

为了提高BT基陶瓷BDS, 许多研究人员在BT基或BT-Bi基陶瓷中添加玻璃来提高致密度, 同时达到降低烧结温度的效果。Wang等[30]在BT陶瓷中添加BaO-SrO-TiO2-Al2O3-SiO2-BaF2玻璃, 当玻璃添加量为7wt%, BDS提高到94.6 kV/cm, 获得0.32 J/cm3Wrec。Wang等[31]在Ba0.4Sr0.6TiO3陶瓷中添加BaO-B2O3-SiO2-Na2CO3-K2CO3玻璃, BDS提高到280.5 kV/cm, 获得0.72 J/cm3Wrec。Yang等[32]在Ba0.4Sr0.6TiO3 陶瓷中添加Bi2O3-B2O3-SiO2玻璃, 当玻璃添加量为9wt%, BDS提高到279 kV/cm, 获得1.98 J/cm3Wrec和90.57%的η。Yang等[33]在Ba0.85Ca0.15Zr0.1Ti0.9O3陶瓷中添加B2O3-Al2O3-SiO2玻璃, BDS提高到250 kV/cm, 当玻璃添加量为5wt%, 获得1.15 J/cm3Wrec。Wu等[34]在Ba0.4Sr0.6Zr0.15Ti0.85O3陶瓷中添加SrO-B2O3-SiO2玻璃, BDS提高到220 kV/cm, 当玻璃添加量为5wt%, 获得0.45 J/cm3Wrec和88.2%的η。Wang等[35]在0.85BaTiO3-0.15Bi(Mg2/3Nb1/3)O3陶瓷中添加B2O3-Na2B4O7-Na2SiO3玻璃, BDS提高到240 kV/cm, 当玻璃添加量为3wt%, 获得1.26 J/cm3Wrec和80.9%的η。上述BT基和BT-Bi基玻璃陶瓷BDS均随着玻璃含量增加而增大, 但同样存在玻璃含量高时Ps大幅降低现象。此外在BT陶瓷中添加低温晶相助烧剂也可改善BT基陶瓷BDS。铌酸锌(ZnNb2O6)[36]是一种典型低温烧结微波介质陶瓷。Wang等[37]用固相法合成BaTiO3-ZnNb2O6 (BT-ZN)陶瓷, 结果表明添加ZN显著降低BT陶瓷烧结温度。Yan等[38]和Yang等[39]分别用固相法和微波烧结法制备BT-ZN陶瓷, 结果表明添加ZN并未明显改变BT陶瓷TC。上述研究发现添加ZN使BT陶瓷BDS和储能性能都得到改善, 但均未系统性研究ZnNb2O6含量对BT陶瓷介电常数频率稳定性和温度稳定性, 以及对极化强度值和储能性能的影响。

本工作用固相法制备了BaTiO3-ZnNb2O6 (BT-ZN)陶瓷, 系统地研究了ZnNb2O6含量对BT-ZN陶瓷烧结温度、相结构、显微结构、介电常数的频率稳定性和温度稳定性、击穿电场、极化强度值和储能性能的影响。

1 实验方法

1.1 样品制备

以分析纯BaCO3、TiO2、ZnO和Nb2O5为原料, 固相法制备(1-x)BaTiO3-xZnNb2O6(x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (BTZN1-6)陶瓷。先分别称料BaCO3、TiO2、ZnO和Nb2O5, 球磨6 h, 然后分别在1150和900 ℃煅烧2 h合成BT和ZN预烧粉, 并将预烧粉二次球磨。将BT和ZN预烧粉按配比称料球磨6 h, 干燥后加入PVA (5wt%)造粒, 在150 MPa下压制成直径12 mm, 厚度1~ 2 mm圆片生坯。600 ℃排胶4 h后在1100~ 1350 ℃下烧结2 h成瓷。用被银法在850 ℃保温20 min制备厚度1 mm的介电性能测试样品。用喷金法制备厚度0.3 mm的铁电性能测试样品, 电极直径为6 mm。

1.2 性能测试

采用阿基米德排水法测试样品密度。采用X射线衍射仪(XRD, D8 Advance, Bruker, Germany)测试样品相结构。采用扫描电子显微镜(SEM, Verios 460, FEI, USA)观察抛光热腐蚀样品表面显微结构。采用阻抗分析仪(E4990A, Aglient, USA)测试样品介电性能频率稳定性, 频率范围为100 Hz~10 MHz。采用LCR电桥(E4980A, Aglient, USA)测试样品介电性能温度稳定性, 温度范围为-100~500 ℃, 升温速率3 ℃/min, 测试频率为100 Hz、1 kHz、10 kHz、100 kHz和1 MHz。采用铁电测试仪(Premier II, Radiant, USA)测试样品室温下电滞回线, 测试频率为10 Hz。

2 结果和讨论

2.1 BTZN陶瓷的结构分析

图1是BTZN陶瓷不同烧结温度的密度, 插图为不同ZN含量BTZN陶瓷最佳烧结温度和密度, BTZN陶瓷最佳烧结温度随ZN含量增加从1275 ℃ (BTZN1)降低到1200 ℃(BTZN6)。纯BT陶瓷烧结温度高达1375 ℃[3], 而ZN陶瓷烧结温度仅有1150 ℃[36], 说明添加ZN有效降低了BTZN陶瓷烧结温度。而最佳烧结温度下BTZN陶瓷密度随ZN含量增加从5.808 g/cm3(BTZN1)降低到5.701 g/cm3 (BTZN6), 主要由于ZN陶瓷的理论密度(5.645 g/cm3)比BT陶瓷(6.018 g/cm3)低[37]

图 1. BTZN陶瓷不同烧结温度的密度, 插图为不同ZN含量BTZN陶瓷最佳烧结温度和密度

Fig. 1. Density as a function of sintering temperature for BTZN ceramics with inset showing the optimum sintering temperature and density of BTZN ceramics with different ZN content

下载图片 查看所有图片

图2(a)是BTZN陶瓷XRD图谱, 结果表明所有样品主晶相衍射峰为BaTiO3(No. 050626)。当ZN含量达到3mol%时出现ZnNb2O6(No. 371371)和第二相Ba2Ti5O12(No. 170661)的衍射峰[37]

图 2. (a)BTZN陶瓷XRD图谱和(b)31°~32°放大图谱

Fig. 2. (a) XRD patterns of BTZN ceramics and (b) enlarged XRD patterns from 31° to 32° of BTZN ceramics

下载图片 查看所有图片

图2(b)是BTZN陶瓷31°到32°放大图谱, 衍射峰随ZN含量增加向低角度方向移动, 说明晶面间距变大。通常容差因子t在0.79~1.1可形成稳定钙钛矿结构, 容差因子计算公式[40]:

t=rA+rO2(rB+rO)

式(1)中: rA——A位阳离子半径; rB——B位阳离子半径; rO——氧离子半径。Zn2+取代A位和B位容差因子分别为0.728和0.909, 而Nb5+分别为0.718和0.926。Zn2+(0.074 nm)和Nb5+(0.070 nm)远小于A位Ba2+(0.135 nm), 比B位Ti4+(0.068 nm)略大。所以Zn2+和Nb5有可能取代B位Ti4+, 增大B-O八面体体积, 导致晶面间距增大。

图3是BTZN陶瓷的抛光热腐蚀SEM照片, 从图中可见所有样品均很致密, 晶粒尺寸随ZN含量增加显著减小, 说明ZN抑制BTZN陶瓷晶粒生长, 晶粒尺寸减小非常有利于提高陶瓷BDS[35]

图 3. BTZN陶瓷热腐蚀的SEM照片(a) BTZN1; (b) BTZN2; (c) BTZN3; (d) BTZN4; (e) BTZN5; (f) BTZN6

Fig. 3. SEM images of polished and thermally etched BTZN ceramics

下载图片 查看所有图片

2.2 BTZN陶瓷的介电性能

图4(a, b)是BTZN陶瓷介电常数(εr)和介电损耗(tanδ)随频率变化的曲线, BTZN陶瓷εr和tanδ都随ZN含量增加逐渐降低。100 Hz下εr从3923 (BTZN1)降低到1604(BTZN6), tanδ从0.013(BTZN1)减小到0.006(BTZN6), 10 MHz下所有样品tanδ <0.05, 这是由于ZN的εr和tanδ都远远低于BT[36]。所有BTZN陶瓷εr随频率升高逐渐降低, 是由于不同极化机制响应频率不同造成的。低频下电子位移极化、离子位移极化和偶极子取向极化等各种机制都对εr有贡献, 高频时只有电子位移极化和离子位移极化机制[35]。BTZN1陶瓷εr随频率升高降低较为明显, 随ZN含量增加, BTZN陶瓷εr表现出良好的频率稳定性, 说明ZN显著减弱了BTZN陶瓷介电极化。

图 4. BTZN陶瓷的介电性能频率稳定性

Fig. 4. Frequency stability of dielectric properties for BTZN ceramic

下载图片 查看所有图片

为了进一步研究ZN含量对BTZN陶瓷εr随频率变化的影响, 我们定义了一个公式:

εr(f)=-alglgf+b

式(2)中: εr(f)——频率为f时的εr; f——测试频率。图4(a)中插图是线性拟合斜率a和截距b的拟合值与ZN含量关系。随ZN含量增加, 斜率a从114.7(BTZN1)减小到26.6(BTZN6), 说明εr随频率变化率越来越小。截距bεr减小规律一致, 从4195(BTZN1)减小到1670(BTZN6)。

我们通过定义频率电容系数(Frequency coefficient of capacitance, FCC)来描述BTZN陶瓷εr频率稳定性:

FCC=ΔCC100Hz=Cf-C100HzC100Hz

式(3)中: C100 Hz——频率为100 Hz时C; Cf——频率为fC。图4(c)是FCC随频率变化, 所有BTZN陶瓷FCC均随频率升高逐渐减小, 是由于εr随频率升高逐渐减小。为了进一步描述ZN含量对FCC影响, 图4(d)是FCC随ZN含量变化曲线, 在相同测试频率下FCC均随ZN含量增加逐渐增大, 10 MHz下FCC从-14.85%(BTZN1)提高到-8.45%(BTZN6), 说明ZN添加有利于提高BTZN陶瓷εr频率稳定性。

图5是BTZN陶瓷在-100~500 ℃范围内的介电常数和介电损耗与温度的关系。随着ZN含量增加, BTZN陶瓷居里温度(TC)并没有明显变化, 而介电常数居里峰展宽较为明显。Yang等[39]采用TEM在BTZN陶瓷晶粒和晶界处都发现了Zn和Nb元素, 说明ZnNb2O6和BaTiO3形成了固溶体。但晶界处Zn和Nb元素含量明显高于晶粒内部, 且观察到BTZN陶瓷存在壳核结构。由于壳核结构的形成和Zn2+和Nb5+取代B位Ti4+造成BTZN陶瓷的化学成分不均匀, 引起弥散相变导致居里峰展宽[38]TC处最大介电常数(εm)随ZN含量增加逐渐减小, 1 MHz下εm从3956(BTZN1)降低到1694(BTZN6), 主要是由于ZN的εr低于BT[36]TCεm的变化和其他在BT中添加ZN的文献报道结果一致[38,39]。用电容温度系数(Temperature Coefficient of Capacitance, TCC)来进一步研究BTZN陶瓷εr的温度稳定性[35, 41-42]:

TCC=ΔCC25°C=CT-C25°CC25°C

式(4)中: C25 ℃——25 ℃时的电容; CT——温度T时的电容。

图 5. BTZN陶瓷-100~500 ℃的介电常数和介电损耗

Fig. 5. Temperature dependence of dielectric constant and loss of BTZN ceramics from -100 ℃ to 500 ℃

下载图片 查看所有图片

图6是BTZN陶瓷基于25 ℃在1 MHz下的TCC, 虚线表示TCC范围是±15%, 25 ℃的TCC为0, 位于两条虚线中间。从图中可以看出, 所有BTZN陶瓷均满足X8R(-55~150 ℃, ΔC/C25 ℃≤±15%)[43]电容器标准。

图 6. BTZN陶瓷1 MHz下基于25 ℃的TCC

Fig. 6. TCC of the BTZN ceramics at the frequency of 1 MHz and a base temperature of 25 ℃

下载图片 查看所有图片

2.3 BTZN陶瓷的储能性能

图7是BTZN陶瓷击穿电场下的室温电滞回线(10 Hz)。所有样品表现出瘦电滞回线, 高BDS, 大Ps和低Pr, 适合应用于能量存储领域[26]。插图是不同ZN含量的BTZN陶瓷的BDS, BDS随ZN含量增加而增大。从80 kV/cm(BTZN1)增大到240 kV/cm(BTZN6), BDS的提高主要是由于晶粒尺寸减小(图3)。

图 7. BTZN陶瓷击穿电场下室温电滞回线(10 Hz), 箭头方向为ZN含量增大方向, 插图为不同ZN含量BTZN陶瓷BDS

Fig. 7. P-E loops of BTZN ceramics at critical electric field, room temperature and 10 Hz with direction of the arrow indicating the direction in which the ZN content increases with inset showing the BDS of BTZN ceramics with different ZN contents

下载图片 查看所有图片

图8(a)是不同ZN含量BTZN陶瓷在100 kV/cm下(最大极化强度值)的PmaxPrPmax-Pr (BTZN1陶瓷的BDS为80 kV/cm, 所以并未出现)。PmaxPrPmax-Pr 均随着ZN含量增加逐渐减小。PmaxPr分别从20.26和4.48 μC/cm2(BTZN2)减小到11.67和1.37 μC/cm2(BTZN6), 这是由于添加ZN稀释了BTZN陶瓷的铁电性, 和其他BT-ZN陶瓷的结果一致[37,38,39]。用P-E曲线研究BTZN陶瓷储能性能, 曲线由于存在滞回, 充电曲线和放电曲线并不重合。能量存储密度(W)是充电电流曲线和极化强度轴包围的面积积分, 可释放能量密度(Wrec)是放电电流曲线和极化强度轴包围的面积积分, 损失掉能量密度(Wloss)是充放电电流曲线包围的面积积分, 能量存储效率(η)是Wrec/W。因此W, Wrec, Wlossη都是衡量能量存储性能的重要指标[35]:

W=0PmaxEdPWrec=PrPmaxEdPWloss=W-Wrecη=WrecW×100%

式(5~8)中: E——电场强度; P——极化强度值。

图 8. BTZN陶瓷储能性能

Fig. 8. Energy storage properties of BTZN ceramics

下载图片 查看所有图片

图8(b)~(e)是BTZN陶瓷不同电场强度下W, Wrec, Wlossη。随ZN含量增加W, WrecWloss都逐渐增加, 而η逐渐减小, 主要由于Wloss随电场强度增加显著增大[26, 35]。实际应用不仅需要高Wrec, 同时高η也是必须的, 低η材料在充放电过程中会将大量电能转换成热能, 导致材料性能恶化[35]。当ZN的含量为4mol%时, 不同电场下η均高于77.6%。图8(f)是不同ZN含量BTZN陶瓷在各自BDS下的W, Wrec, Wlossη, 随ZN含量增加W, Wrec, Wlossη大体呈增大趋势, 当ZN含量4mol%, BTZN6陶瓷在240 kV/cm电场下获得1.22 J/cm3Wrec和77.6%的η

3 结论

本研究采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%)陶瓷。添加ZN有效降低了BTZN陶瓷的最佳烧结温度。XRD结果表明所有样品主晶相为BaTiO3, 当ZN含量达到3mol%时出现ZnNb2O6和第二相Ba2Ti5O12。BTZN陶瓷晶粒尺寸随ZN含量增加显著减小。εr和tanδ随ZN含量增加逐渐降低, 100 Hz下εr从3923降低到1604, tanδ从0.013减小到0.006, 10 MHz下所有样品tanδ <0.05。εr频率稳定性随ZN含量增加逐渐增强, 10 MHz下FCC从-14.85%提高到-8.45%。介电温谱结果表明所有BTZN陶瓷均符合X8R电容器标准。BDS随ZN含量增加而增大, 从80 kV/cm增大到240 kV/cm。极化强度值随着ZN含量的增加逐渐降低, 100 kV/cm下PmaxPr分别从20.26和4.48 μC/cm2减小到11.67和1.37 μC/cm2。随ZN含量增加W, Wrec, Wlossη大体上呈增大趋势, 当ZN含量为4mol%时, BTZN6陶瓷在240 kV/cm电场下获得1.22 J/cm3Wrec和77.6%的η。结果表明BTZN陶瓷有望应用于高温电容器和储能领域。

参考文献

[1] ACOSTAM, NOVAKN, ROJASV, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 2017,4(4):041305.

[2] HENNINGSD, ROSENSTEING. Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc., 1984,67(4):249-254.

[3] JIANG XW, HAOH, ZHANG SJ, et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc., 2019,39(4):1103-1109.

[4] HUANG YA, LUB, YI XZ, et al. Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. J. Inorg. Mater., 2018,33(7):767-772.

[5] GHAYOURH, ABDELLAHIM. A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol., 2016,292:84-93.

[6] ZEBA, MILNE SJ. Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc., 2014,34(13):3159-3166.

[7] DAMJANOVICD. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998,61(9):1267-1324.

[8] GUO FQ, ZHANG BH, FAN ZX, et al. Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron., 2016,27(6):5967-5971.

[9] YUAN QB, LIG, YAO FZ, et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy, 2018,52:203-210.

[10] HAO XH. A review on the dielectric materials for high energy- storage application. J. Adv. Dielect., 2013,03(1):1330001.

[11] DU HL, YANG ZT, GAOF, et al. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater., 2018,33(10):1046-1058.

[12] YANG LT, KONGX, LIF, et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci., 2019,102:72-108.

[13] YANF, YANG HB, LINY, et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem., 2017,56(21):13510-13516.

[14] YANG HB, YANF, LINY, et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustainable Chem. Eng., 2017,5(11):10215-10222.

[15] YANG HB, YANF, LINY, et al. Lead-free BaTiO3- Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc., 2017,37(10):3303-3311.

[16] YANF, YANG HB, YINGL, et al. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C, 2018,6(29):7905-7912.

[17] LIU XY, YANG HB, YANF, et al. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J. Alloys Compd., 2019,778:97-104.

[18] YANG HB, LIU PF, YANF, et al. A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd., 2019,773:244-249.

[19] YANG ZT, GAOF, DU HL, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019,58:768-777.

[20] WANGT, JINL, TIANY, et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014,137:79-81.

[21] JINL, LIF, ZHANG SJ. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc., 2014,97(1):1-27.

[22] WANGT, HU JC, YANG HB, et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys., 2017,121(8):084103.

[23] HUANG YH, WU YJ, LIJ, et al. Enhanced energy storage properties of barium strontium titanate ceramics prepared by Sol-Gel method and spark plasma sintering. J. Alloys Compd., 2017,701:439-446.

[24] PULI VS, PRADHAN DK, CHRISEY DB, et al. Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci., 2012,48(5):2151-2157.

[25] SUNZ, LI LX, YU SH, et al. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans., 2017,46(41):14341-14347.

[26] WANGT, JINL, LI CC, et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015,98(2):559-566.

[27] HU QY, JINL, WANGT, et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd., 2015,640:416-420.

[28] YUAN QB, YAO FZ, WANG YF, et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 2017,5(37):9552-9558.

[29] LI WB, ZHOUD, PANG LX, et al. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 2017,5(37):19607-19612.

[30] WANG XR, ZHANGY, SONG XZ, et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012,32(3):559-567.

[31] WANGT, JINL, SHU LL, et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd., 2014,617:399-403.

[32] YANG HB, YANF, LINY, et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc., 2018,38(4):1367-1373.

[33] YANG HB, YANF, ZHANGG, et al. Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd., 2017,720:116-125.

[34] WUT, PU YP, CHENK. Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int., 2013,39(6):6787-6793.

[35] WANGT, WANG YH, YANG HB, et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage. J. Adv. Dielect., 2018,8(6):1850041.

[36] GAOF, LIU JJ, HONG RZ, et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceram. Int., 2009,35(7):2687-2692.

[37] WANGT, WEI XY, HU QY, et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B, 2013,178(16):1081-1086.

[38] YANY, NINGC, JIN ZZ, et al. The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd., 2015,646:748-752.

[39] YANGY, LIU KH, LIU XK, et al. Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int., 2016,42(6):7877-7882.

[40] SPAGNOL PD, VARELA JA, ZAGHETE MA, et al. Evidence of hetero-epitaxial growth of Pb(Mg1/3Nb2/3)O3 on the BaTiO3 seed particles of a citrate solution. Mater. Chem. Phys., 2002,77(3):918-923.

[41] YANG HB, YANF, LINY, et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol., 2018,6(2):357-365.

[42] JIA WX, HOU YD, ZHENG MP, et al. Superior temperature- stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc., 2018,101(8):3468-3479.

[43] SUNY, LIUH, HAOH, et al. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Am. Ceram. Soc., 2015,98(5):1574-1579.

王通, 王渊浩, 杨海波, 高淑雅, 王芬, 鲁雅文. BaTiO3-ZnNb2O6陶瓷介电及储能性能研究[J]. 无机材料学报, 2020, 35(4): 431. Tong WANG, Yuanhao WANG, Haibo YANG, Shuya GAO, Fen WANG, Yawen LU. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!