光学 精密工程, 2018, 26 (5): 1254, 网络出版: 2018-08-14  

升余弦变增益微视觉图像自适应增强与应用

Micro-vision image adaptive enhancement and application based on raised cosine variable gain
张翔 1,2张宪民 1,2李海 1,2李凯 1,2
作者单位
1 华南理工大学 制浆造纸工程国家重点实验室, 广东 广州 510641
2 广东省精密装备与制造技术实验室, 广东 广州 510641
摘要
微视觉系统中同轴光源和光学衍射的存在, 使CCD相机获取的图像具有灰度值偏低、光照不均匀、动态范围大、对比度差以及微细结构丢失或无法辨识的缺陷。为改善图像质量, 本文提出一种升余弦变增益子带分解微视觉图像自适应增强方法。该算法首先基于图像特性利用自适应Log增益对原图像进行增强, 提高微视觉图像中亮暗区细节特征与背景的对比度; 接着使用自适应升余弦卷积进行快速照度估计; 然后对各通道的输出图像采用自适应变增益子带分解算法获取独立光谱子带; 最后进行亮度校正、图像融合与色彩恢复。将该算法用于微位移测量系统中可使测量结果的相对误差小于20%; 用于处理光照不均的图像可有效降低同轴光源靠近中心区域的亮度; 此外, 扩展至普通图像的处理中可提高对比度, 改善细节特征。3组实验结果的平均图像质量相对提高率为81.46%, 71.18%和93.75%; 平均耗时为386 s, 0.24 s和1.27 s。
Abstract
The micro-vision images captured by the CCD camera typically show low gray value, non-uniform illumination, large dynamic range, poor contrast and missed or unrecognized fine structure due to the coaxial light source and optical diffraction in micro-vision system. Based on the raised cosine and variable gain sub-band decomposition algorithm, a micro-vision image adaptive enhancement method was developed to improve the image quality in this work. First, on the basis of image characteristic, the original micro-vision image was enhanced by using adaptive Log gain function to improve the contrast between minutiae and background which located in bright or dark regions. Then, the fast illumination estimation was carried out in terms of the adaptive cosine convolution. After that, the independent spectral sub-bands of the image in each channel were obtained through the adaptive variable gain sub-band decomposition algorithm. The ultimately enhanced image was generated after the implement of intensity correction, image fusion and color restoration. The algorithm had been successfully applied to a micro displacement measurement system and the relative error was less than 20%. Moreover, extended the algorithm to ordinary image processing can improve the contrast and minutiae. The relative increasing rates of the average quality of three experiments were 81.46%, 71.18% and 93.75%, respectively; and the average consuming time were 3.86 s, 0.24 s, and 1.27 s, respectively.
参考文献

[1] 王先逵. 广义制造论 [J]. 机械工程学报, 2003, 39(10): 86-94.

    WANG X K. Broad manufacturing theory [J]. Chinese Journal of Mechanical Engineering, 2003, 39(10): 86-94. (in Chinese)

[2] 王先逵. 现代制造技术及其发展趋向 [J]. 现代制造工程, 2008(1): 1-8.

    WANG X K. Modern manufacturing technology and its development [J]. Modern Manufacturing Engineering, 2008(1): 1-8. (in Chinese)

[3] GUO T, MA L, BIAN Y. MEMS characterization based on optical measuring methods [M]//ISLAM N. Microelectromechanical Systems and Devices, Rijeka, Croatia: Nazmul Islam., 2012.

[4] WU H, ZHANG X M, GAN J Q, et al.. Displacement measurement system for inverters using computer micro-vision [J]. Optics and Lasers in Engineering, 2016, 81: 113-118.

[5] ZHANG X, ZHANG X M, WU H, et al.. A high accuracy algorithm of displacement measurement for a micro-positioning stage [J]. AIP Advances, 2017, 7(5): 055301.

[6] CHOI M S, KIM W Y. A novel two stage template matching method for rotation and illumination invariance [J]. Pattern Recognition, 2002, 35(1): 119-129.

[7] WEI B H, WANG F, HU X P. Rotation-invariant template matching based on ring projection and orientation codes [C]. Proceedings of the 5th International Conference on Intelligent Control and Information Processing, IEEE, 2014: 192-197.

[8] WU H, ZHANG X M, GAN J Q, et al.. High-precision displacement measurement method for three degrees of freedom-compliant mechanisms based on computer micro-vision [J]. Applied Optics, 2016, 55(10): 2594-2600.

[9] 黄赞, 张宪民, 陈忠. 基于同态滤波的鲁棒多尺度微运动测量算法 [J]. 仪器仪表学报, 2011, 32(2): 426-431.

    HUANG Z, ZHANG X M, CHEN ZH. Robust multi-scale micro-motion measurement algorithm based on homomorphic filtering [J]. Chinese Journal of Scientific Instrument, 2011, 32(2): 426-431. (in Chinese)

[10] 卢清华, 张宪民, 范彦斌. 基于计算机微视觉的鲁棒多尺度平面微运动测量 [J]. 机械工程学报, 2009, 45(2): 164-169, 177.

    LU Q H, ZHANG X M, FAN Y B. Robust multiscale method for in-plane micro-motion measurement based on computer micro-vision [J]. Journal of Mechanical Engineering, 2009, 45(2): 164-169, 177. (in Chinese)

[11] 李海, 张宪民, 黄沿江, 等. 光学显微线条纹图像中心线提取 [J]. 光学 精密工程, 2017, 25(5): 1340-1347.

    LI H, ZHANG X M, HUANG Y J, et al.. Centerline extraction of stripe imaged by optical microscope [J]. Opt. Precision Eng., 2017, 25(5): 1340-1347. (in Chinese)

[12] 余金栋, 张宪民. 用于线纹显微图像的边缘检测算法 [J]. 光学 精密工程, 2015, 23(1): 271-281.

    YU J D, ZHANG X M. Edge detection algorithm for lines on microscopic image [J]. Opt. Precision Eng., 2015, 23(1): 271-281. (in Chinese)

[13] HAN H, SHAN SH G, CHEN X L, et al.. A comparative study on illumination preprocessing in face recognition [J]. Pattern Recognition, 2013, 46(6): 1691-1699.

[14] ADINI Y, MOSES Y, ULLMAN S. Face recognition: the problem of compensating for changes in illumination direction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 721-732.

[15] ZOU X, KITTLER J, MESSER K. Illumination invariant face recognition: a survey [C]. Proceedings of the 1st IEEE International Conference on Biometrics: Theory, Applications, and Systems, IEEE, 2007: 1-8.

[16] 葛微, 李桂菊, 程宇奇, 等. 利用改进的Retinex进行人脸图像光照处理 [J]. 光学 精密工程, 2010, 18(4): 1011-1020.

    GE W, LI G J, CHENG Y Q, et al.. Face image illumination processing based on improved Retinex [J]. Opt. Precision Eng., 2010, 18(4): 1011-1020. (in Chinese)

[17] RUIZ-DEL-SOLAR J, VERSCHAE R. Skin detection using neighborhood information [C]. Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, IEEE, 2004: 463-468.

[18] YANG U, KIM B, TOH K A, et al.. Illumination-invariant color space and its application to skin-color detection [J]. Optical Engineering, 2010, 49(10): 107004.

[19] 余顺园, 朱虹. 夜间有雾图像的光照模型构建及去雾 [J]. 光学 精密工程, 2017, 25(3): 729-734.

    YU SH Y, ZHU H. Lighting model construction and haze removal for nighttime image [J]. Opt. Precision Eng., 2017, 25(3): 729-734. (in Chinese)

[20] WANG J B, HE N, ZHANG L L, et al.. Single image dehazing with a physical model and dark channel prior [J]. Neurocomputing, 2015, 149: 718-728.

[21] PEI S C, LEE T Y. Nighttime haze removal using color transfer pre-processing and dark channel prior [C]. Proceedings of the 19th IEEE International Conference on Image Processing, IEEE, 2012: 957-960.

[22] 赵宏宇, 肖创柏, 禹晶, 等. 马尔科夫随机场模型下的Retinex夜间彩色图像增强 [J]. 光学 精密工程, 2014, 22(4): 1048-1055.

    ZHAO H Y, XIAO CH B, YU J, et al.. A Retinex algorithm for night color image enhancement by MRF [J]. Opt. Precision Eng., 2014, 22(4): 1048-1055. (in Chinese)

[23] 余金栋, 张宪民, 陈忠. 尺度优化的Retinex增强算法与微视觉图像增强 [J]. 华南理工大学学报(自然科学版), 2013, 41(2): 7-11.

    YU J D, ZHANG X M, CHEN ZH. Retinex enhancement algorithm with scale optimization and micro vision image enhancement [J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(2): 7-11. (in Chinese)

[24] LAND E H, MCCANN J J. Lightness and retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.

[25] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex [J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.

[26] RAHMAN Z, JOBSON D J, WOODELL G A. Multi-scale retinex for color image enhancement [C]. Proceedings of 1996 International Conference on Image Processing, IEEE, 1996: 1003-1006.

[27] JANG J H, BAE Y, RA J B. Contrast-enhanced fusion of multisensor images using subband-decomposed multiscale retinex [J]. IEEE Transactions on Image Processing, 2012, 21(8): 3479-3490.

[28] TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images [C]. Proceedings of the 6th International Conference on Computer Vision, IEEE, 1998: 839-846.

[29] CHAUDHURY K N, SAGE D, UNSER M. Fast O(1) bilateral filtering using trigonometric range kernels [J]. IEEE Transactions on Image Processing, 2011, 20(12): 3376-3382.

[30] VARDHAN D V, REDDY K J. Acceleration of shiftable O (1) algorithm for bilateral filtering and non-local means [J]. International Journal of Science and Research, 2014, 3(9): 1073-1077.

[31] SAHA P K, UDUPA J K, ODHNER D. Scale-based fuzzy connected image segmentation: theory, algorithms, and validation [J]. Computer Vision and Image Understanding, 2000, 77(2): 145-174.

[32] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer [J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.

[33] WANG ZH, SHEIKH H R, BOVIK A C. No-reference perceptual quality assessment of JPEG compressed images [C]. Proceedings of 2002 International Conference on Image Processing, IEEE, 2002: I-477-I-480.

[34] LIU L X, LIU B, HUANG H, et al.. No-reference image quality assessment based on spatial and spectral entropies [J]. Signal Processing: Image Communication, 2014, 29(8): 856-863.

张翔, 张宪民, 李海, 李凯. 升余弦变增益微视觉图像自适应增强与应用[J]. 光学 精密工程, 2018, 26(5): 1254. ZHANG Xiang, ZHANG Xian-min, LI Hai, LI Kai. Micro-vision image adaptive enhancement and application based on raised cosine variable gain[J]. Optics and Precision Engineering, 2018, 26(5): 1254.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!