光子学报, 2019, 48 (9): 0912004, 网络出版: 2019-10-12   

基于光纤三波长激光自混合干涉的绝对距离测量系统

Absolute Distance Measurement System Based on the Selfmixing Interferometry of a Threewavelength Optical Fiber Laser
作者单位
北京交通大学 理学院 光电信息科学与工程实验室, 北京 100044
摘要
研究了一种基于光纤三波长激光自混合干涉的绝对距离测量系统.系统中的光纤激光器包含三个独立的激光谐振腔, 每个激光谐振腔都有作为增益介质的掺铒光纤, 三个激光谐振腔利用光纤光栅作为反射镜及波长选择元件, 光纤激光器能同时发出无模竞争的频率和功率都稳定的三波长激光.利用三波长激光的自混合干涉, 以及干涉信号的相位小数重合方法, 实现绝对距离测量.为实现绝对距离测量, 三个波长中两相邻波长间距应为相等.实验中, 两相邻波长间距约为10 nm.系统对公称高度为11 mm 修正值不大于2.7 μm的台阶高度进行测量, 测量结果为11.000 059 mm.对13.000 090 mm 绝对距离重复测量20次的标准差为4.4 nm.
Abstract
An absolute distance measurement system based on the selfmixing interferometry of a threewavelength optical fiber laser has been presented and experimented. The optical fiber laser is consisted of three independent laser cavities and there is erbiumdoped fiber as a gain medium in each laser cavity. The three laser cavities use fiber Bragg gratings as the reflectors and wavelength selectors, and three wavelengths have been emitted simultaneously. There is no laser mode competition between the three wavelengths so each of the three wavelengths has stable frequency and power. Absolute distance measurement can be realized based on the selfmixing interferometry of the three wavelengths and the coincidence of the phase decimal of the three wavelengths selfmixing interferometric signals. By the method of simulation analyzing, the difference between every two adjacent wavelengths should be equal approximately. In the experiments, the difference between every two adjacent wavelengths is about 10 nm. A step with the nominal height of 11 mm and the corrected value less than 2.7 μm was measured by the system. The measurement result is 11.000 059 mm. The standard deviation of twenty times repeated measurements of the absolute distance 13.000 090 mm is 4.4 nm.
参考文献

[1] TAIMRE T, NIKOLIC M, BERTLING K,et al. Laser feedback interferometry: a tutorial on the selfmixing effect for coherent sensing[J]. Advances in Optics and Photonics, 2015, 7(3): 570631.

[2] MOURAT G, SERVAGENT N, BOSCH T M. Distance measurement using the selfmixing effect in a threeelectrode distributed Bragg reflector laser diode[J].Optical Engineering, 2000, 39(3): 738743.

[3] TAN Yidong, ZENG Zhaoli, ZHANG Shulian,et al. Method for in situ calibration of multiple feedback interferometers[J]. Chinese Optics Letters, 2013, 11(10): 102601.

[4] NORGIA M, DONATI S. A displacementmeasuring instrument utilizing selfmixing interferometry[J].IEEE Transactions on Instrumentation & Measurement, 2003, 52(6): 17651770.

[5] FAN Yuanlong, YU Yanguang, XI Jiangtao,et al. Improving the measurement performance for a selfmixing interferometrybased displacement sensing system[J]. Applied Optics, 2011, 50(26): 50645072.

[6] CHEN Junhao, ZHU Hongbin, WEI Xia,et al. Syntheticwavelength selfmixing interferometry for displacement measurement[J]. Optics Communications, 2016, 368: 7380.

[7] KOU Ke, LI Xingfei, YANG Ying,et al. Selfmixing interferometry based on all phase FFT for highprecision displacement measurement[J]. Optik  International Journal for Light and Electron Optics, 2015, 126(3): 356360.

[8] MA Sen, XIE Fang, CHEN Liang,et al. Development of dualwavelength fiber ring laser and its application to stepheight measurement using selfmixing interferometry[J]. Optics Express, 2016, 24(6): 56935698.

[9] DONG Lianlian, XIE Fang, MA Sen, et al. Simple tunable dualwavelength fiber laser and multiple selfmixing interferometry to large step height measurement[J]. Optics Express, 2016, 24(19): 2188021885.

[10] MAGNANI A, NORGIA M. Spectral analysis for velocity measurement through selfmixing interferometry[J]. IEEE Journal of Quantum Electronics, 2013, 49(9): 765769.

[11] TAN Yidong, ZHANG Shulian, ZHANG Song, et al. Response of microchip solidstate laser to external frequencyshifted feedback and its applications[J]. Scientific Reports, 2013, 3(10): 2912.

[12] DAI Xiajuan, WANG Ming, ZHAO Yi, et al. Selfmixing interference in fiber ring laser and its application for vibration measurement[J]. Optics Express, 2009, 17(19): 1654316548.

[13] WU Yun, TAN Yidong, ZENG Zhaoli, et al. Note: Highperformance HeNe laser feedback interferometer with birefringence feedback cavity scanned by piezoelectric transducer[J]. Review of Scientific Instruments, 2013, 84(5): 056103.

[14] TAN Yidong, XU Chunxin, ZHANG Song, et al. Power spectral characteristic of microchip Nd∶YAG laser subjected to frequencyshifted optical feedback[J]. Laser Physics Letters, 2013, 10(2): 025001.

[15] LI Jiang, TAN Yidong, ZHANG Shulian. Generation of phase difference between selfmixing signals in acut Nd∶YVO4 laser with a waveplate in the external cavity[J]. Optics Letters, 2015, 40(15): 36153618.

王韵致, 谢芳, 陈龙辉, 徐海波, 李明佳. 基于光纤三波长激光自混合干涉的绝对距离测量系统[J]. 光子学报, 2019, 48(9): 0912004. WANG Yunzhi, XIE Fang, CHEN Longhui, XU Haibo, LI Mingjia. Absolute Distance Measurement System Based on the Selfmixing Interferometry of a Threewavelength Optical Fiber Laser[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0912004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!