大气与环境光学学报, 2018, 13 (2): 81, 网络出版: 2018-04-23   

西藏拉萨地区太阳紫外辐射观测

Measurements of Solar UV Radiation in Lhasa, Tibet
作者单位
西藏大学太阳紫外线实验室,西藏 拉萨 850000
摘要
利用NILU-UV紫外辐射探测仪,在2015年1月至2016年12月期间,对西藏拉萨太阳紫外辐射及其影响因子(云、臭氧等)进行观测。结果显示,观测期间紫外辐射 平均日剂量为1.24 MJ·m-2·d-1,其中夏季最高,为1.57 MJ·m-2·d-1,冬季最低,为0.87 MJ·m-2·d-1。 拉萨当地正午时分(05:25~06:25 UTC)平均紫外线指数为8.34,夏季平均值达到11.53,冬季为5.02。紫外线指数瞬时最大值为20.78,紫外辐射日剂量 最大值为2.58 MJ·m-2,两者均出现在2016年8月。夏季拉萨云况变化复杂,出现云增强地面紫外辐射的现象。观测期间拉萨当地正午小时平均 臭氧柱总量为264.2 DU,臭氧含量变化幅度不大。
Abstract
The solar UV radiation and its influence factors (cloud, ozone, etc.) in Lhasa, Tibet, China were observed during the period of January 2015~December 2016 by using the NILU-UV Irradiance Meters. The results show that the daily mean UV dose during the period was 1.24 MJ·m-2·d-1, in which maximum value in summer (from June to August) was 1.57 MJ·m-2·d-1, minimum value in winter (from December to Feburary) was 0.87 MJ·m-2·d-1. The average local noon-hour (05:25~06:25 UTC) UV index (UVI) was 8.34 during the period, in which the average value in summer was 11.53, and 5.02 for the winter. UVI maximum value (20.78) and daily UV dose maximum value (2.58 MJ·m-2) both arose in August, 2016. There was a phenomenon that the UV radiation was strengthened in summer as the cloud exchanged richly. The total ozone column(TOC) almost had no change during measurement, and the average local noon-hour TOC value was 264.2 DU.
参考文献

[1] Diffey B L. Solar ultraviolet radiation effects on biological systems[J].Phys. Med. Biol., 1991, 3(3): 299-328.

[2] Narayanan D L, Saladi R N, Fox J L. Ultraviolet radiation and skin cancer[J].Int. J. Dermatol., 2010, 49(9): 978-986.

[3] Lucas R M, Ponsonby A L. Ultraviolet radiation and health: friend and foe[J].Med. J. Australia, 2002, 177(11): 594-598.

[4] Paul N D, Moore J P, McPherson M,et al. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms[J]. Physiol. Plantarum, 2012, 145(4): 565-581.

[5] Ren P B C, Sigernes F, Gjessing Y. Ground-based measurements of solar ultraviolet radiation in Tibet: Preliminary results[J].Geophys. Res. Lett., 1997, 24(11): 1359-1362.

[6] Norsang G, Kocbach L, Stamnes J,et al. Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau[J]. Appl. Phys. Res., 2011, 3(1): 37-46.

[7] Dahlback A, Norsang G, Stamnes J,et al. UV measurements in the 3000-5000 m altitude region in Tibet[J]. J. Geophys. Res. Atmos., 2007, 112: D09308.

[8] Hφiskar B A, Haugen R, Danielsen T, et al. Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates[J]. Appl. Opt., 2003, 42(18): 3472-3479.

[9] Dahlback A. Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments[J].Appl. Opt., 1996, 35(33): 6514-6521.

[10] McKinlay A F, Diffey B L. A reference action spectrum for ultraviolet induced erythema in human skin[J].Comput. Ind. Eng. 1987, 6: 17-22.

[11] World Meteorological Organization. Report of the WMO meeting of experts on UV-B measurements, data, quality and standardization of UV indices[R]. Geneva, WMO, 1994.

[12] World Health Organization. Global solar UV index: A practical guide[R]. Geneva, WHO, 2002.

[13] Stamnes K, Jin Z, Slusser J,et al. Several-fold enhancement of biologically effective ultraviolet radiation levels at McMurdo Station Antarctica during the 1990 ozone “hole”[J]. Geophys. Res. Lett., 1992, 19(10): 1013-1016.

[14] Kylling A, Dahlback A, Mayer B. The effect of clouds and surface albedo on UV irradiances at a high latitude site[J].Geophys. Res. Lett., 2000, 27(9): 1411-1414.

[15] Calbó J, Pagès D, González J A. Empirical studies of cloud effects on UV radiation: A review[J].Rev. Geophys., 2005, 43(2): RG2002.

[16] Dahlback A, Stamnes K. A new spherical model for computing the radiation field available for photolysis and heating at twilight[J].Planet. Space Sci., 1991, 39(5): 671-683.

[17] Stamnes K, Tsay S C, Wiscombe W,et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[J]. Appl. Opt., 1988, 27(12): 2502-2509.

[18] Stamnes K, Slusser J, Bowen M. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements[J].Appl. Opt., 1991, 30(30): 4418-4426.

[19] 陆龙骅,周国贤,张正秋. 1992年夏季珠穆朗玛峰地区的太阳直接辐射和总辐射[J]. 太阳能学报,1995, 1(3): 229-233.

    Lu Longhua, Zhou Guoxian, Zhang Zhengqiu. Direct and global solar radiations in the region of Mt. Qomolangma during the summer 1992[J].Acta Energiae Solaris Sinica, 1995, 1(3): 229-233(in Chinese).

[20] 王蕾迪,吕达仁,章文星. 西藏羊八井和纳木错太阳辐射特征分析[J]. 高原气象, 2013, 32(2): 315-326.

    Wang Leidi, Lü Daren, Zhang Wenxing. Study on characteristic of solar radiation at Nam Co and Yangbajain in Qinghai-Xizang Plateau[J].Plateau Meteorology, 32(2): 315-32(in Chinese).

[21] 陈 树,郑向东,林伟立,等. 西藏当雄地基紫外线指数观测研究[J]. 应用气象学报, 2015, 2(4): 482-491.

    Chen Shu, Zheng Xiangdong, Lin Weili,et al. Observation study on the ground-based UVI at Dangxiong of Tibet[J]. Journal of Applied Meteorological Science, 2015, 2(4): 482-491(in Chinese).

[22] Piacentini R D, Salum G M, Fraidenraich N,et al. Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil[J]. Renew. Energ., 2011, 3(1): 409-412.

赵地, 诺桑, 措加旺姆, 晋亚铭, 段杰, 周毅. 西藏拉萨地区太阳紫外辐射观测[J]. 大气与环境光学学报, 2018, 13(2): 81. ZHAO Di, NORSANG Gelsor, TSOJA Wangmu, JIN Yaming, DUAN Jie, ZHOU Yi. Measurements of Solar UV Radiation in Lhasa, Tibet[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(2): 81.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!