红外与激光工程, 2019, 48 (1): 0118003, 网络出版: 2019-04-02   

搭载光谱遥感载荷的多旋翼无人机控制系统设计与试验

Design and experiment of multi rotor UAV control system with spectral remote sensing load
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院大学, 北京 100049
3 吉林省农业科学院水稻研究所, 吉林 公主岭 136100
4 河北大学 物理科学与技术学院 光信息技术创新中心, 河北 保定071002
摘要
旋翼无人机作为低成本的新型遥感平台逐渐受到研究者与应用者的重视, 旋翼无人机搭载商用遥感, 具有地面分辨率高、响应迅速、使用维护方便等优点, 很好地弥补了传统遥感的缺陷, 在实际使用中抗干扰能力成为旋翼机遥感系统的重要性能指标。为了弥补常规多旋翼无人机航向控制力矩不足, 首先设计了六轴十二旋翼无人机结构并建立了其动力学模型, 然后针对农业遥感平台抗扰动能力的要求, 设计了专用的带有微分跟踪器、扩张状态观测器和非线性状态误差反馈控制律的自抗扰控制算法。其次通过仿真验证了控制器的稳定性与有效性, 通过实际风扰试验测试了该控制算法在11.2 m/s的短时风扰影响下仍保持良好的轨迹跟踪特性。最后在六轴十二旋翼无人机搭载自主研发的商品化微型高光谱仪MNS2001和两轴稳定云台, 在特定区域水稻上空定点进行光谱遥感测量, 在300~900 nm光谱范围内, 悬停区域上空多次测量的相对误差不超过5%, 试验表明该旋翼机遥感平台具有良好的稳定性和可靠性, 可以进一步应用于农业遥感领域并辅助生产管理。
Abstract
As a new low-cost remote sensing platform, rotor UAV has been paid much attention by researchers and applications. Rotor UAV equipped with commercial remote sensing has many advantages, such as high ground resolution, quick response and easy maintenance, which make up for the shortcomings of traditional remote sensing, in practical use the anti-interference ability has become an important part of the remote sensing system of the rotor. In order to make up for the lack of conventional multi rotor torque heading control, firstly, six axis twelve-rotor UAV structure was designed and its dynamic model was established, then according to the anti disturbance capability of agricultural remote sensing platform requirements, the special algorithm of active disturbance rejection controller(ADRC) was designed with differential tracker, extended state observer and nonlinear state error feedback control law. Secondly, the stability and effectiveness of the controller was verified by simulation. The real wind disturbance test shows that the control algorithm maintains good trajectory tracking characteristics under the influence of instantaneous wind disturbance of 11.2 m/s. Finally, the UAV equipped with self-developed commercial high micro spectrometer MNS2001 and two axis stabilized in six axis twelve tilt rotor, fixed spectral remote sensing measurements in a particular area of rice over 300-900 nm in the spectral range, spectral reflectance hovering over the region of multiple measurement relative error was less than 5%. The test results show that the rotor has a good platform for remote sensing stability and reliability can be further applied in the field of agricultural remote sensing and auxiliary production management.
参考文献

[1] 刘连伟, 杨淼淼, 邹前进,等. 无人机红外辐射建模与图像仿真[J]. 红外与激光工程, 2017, 46(6): 0628002.

    Liu Lianwei, Yang Miaomiao, Zou Qianjin, et al. UAV infrared radiation modeling and image simulation[J]. Infrared and Laser Engineering, 2017, 46(6): 0628002. (in Chinese)

[2] 刘军, 王鹤, 王秋玲, 等. 无人机遥感技术在露天矿边坡测绘中的应用[J]. 红外与激光工程, 2016, 45(S1): S114001.

    Liu Jun, Wang He, Wang Qiuling, et al. Application of UAV remote sensing technology in open-pit slop mapping[J]. Infrared and Laser Engineering, 2016, 45(S1): S114001. (in Chinese)

[3] 葛明锋, 亓洪兴, 王义坤, 等. 基于轻小型无人直升机平台的高光谱遥感成像系统[J]. 红外与激光工程, 2015, 44(11): 3402-3407.

    Ge Mingfeng, Qi Hongxing, Wang Yikun, et al. Hyperspectral imaging remote sensing technology based on light weight unmanned helicopter platform[J]. Infrared and Laser Engineering, 2015, 44(11): 3402-3407. (in Chinese)

[4] 吴银花, 胡炳樑, 高晓惠, 等. 利用区域增长技术的自适应高光谱图像分类[J]. 光学 精密工程, 2018, 26(2): 426-434.

    Wu Yinhua, Hu Bingliang, Gao Xiaohui, et al. Adaptive hyperspectral image classification using region-growing techniques[J]. Optics and Precision Engineering, 2018, 26(2): 426-434. (in Chinese)

[5] 侯榜焕, 姚敏立, 贾维敏, 等. 面向高光谱图像分类的空谱判别分析[J]. 光学 精密工程, 2018, 26(2): 450-460.

    Hou Banghuan, Yao Minli, Jia Weimin, et al. Spatial-spectral discriminant analysis for hyperspectral image classification[J]. Optics and Precision Engineering, 2018, 26(2): 450-460. (in Chinese)

[6] 齐冰洁, 刘金国, 张博研,等. 高分辨率遥感图像SIFT和SURF算法匹配性能研究[J]. 中国光学, 2017, 10(3): 331-339.

    Qi Bingjie, Liu Jinguo, Zhang Boyan, et al. Research on matching performance of SIFT and SURF algorithms for high resolution remote sensing image[J]. Chinese Optics, 2017, 10(3): 331-339. (in Chinese)

[7] 巩盾. 空间遥感测绘光学系统研究综述[J]. 中国光学, 2015, 8(5): 714-724.

    Gong Dun. Review on mapping space remote sensor optical system[J]. Chinese Optics, 2015, 8(5): 714-724.(in Chinese)

[8] 黄青, 唐华俊, 周清波, 等.东北地区主要作物种植结构遥感提取及长势监测[J]. 农业工程学报, 2010, 26(9): 218-223.

    Huang Qing, Tang Huajun, Zhou Qingbo, et al. Remote-sensing based monitoring of planting structure and growth condition of major crops in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 218-223. (in Chinese)

[9] 李冰, 刘镕源, 刘素红,等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报, 2012, 28(13): 160-165.

    Li Bing, Liu Rongyuan, Liu Suhong et al. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 160-165. (in Chinese)

[10] 李继宇, 张铁民, 彭孝东, 等. 四旋翼飞行器农田位置信息采集平台设计与实验[J].农业机械学报, 2013, 44(5): 202-206.

    Li Jiyu, Zhang Tiemin, Peng Xiaodong, et al. Collection platform of field location information based on four-rotor aircraft[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 202-206. (in Chinese)

[11] 窦景欣, 孔祥希, 闻邦椿,等. 四旋翼无人机模糊自抗扰姿态控制及稳定性分析[J]. 中国惯性技术学报, 2015, 23(6): 824-830.

    Dou Jingxin, Kong Xiangxi, Wen Bangchun, et al. Attitude fuzzy active disturbance rejection controller design ofquadrotor UAV and its stability analysi[J]. Journal of Chinese Inertial Technology, 2015, 23(6): 824-830. (in Chinese)

[12] 楼静梅, 张科. 基于自抗扰理论的无人机横侧向解耦控制研究[J]. 计算机测量与控制, 2014, 22(4): 1152-1154.

    Lou Jingmei, Zhang Ke. Study on decoupling control of UAV lateral based on auto-disturbance-rejection control theory[J]. Computer Measurement & Control,2014, 22(4): 1152-1154. (in Chinese)

[13] 张岱峰, 罗彪, 梅亮. 基于PD-ADRC的四旋翼控制器设计[J]. 测控技术, 2015, 34(12): 62-65.

    Zhang Daifeng, Luo Biao, Mei Liang. Design of quadrotor controller based on PD-ADRC[J]. Measurement & Control Technology, 2015, 34(12): 62-65. (in Chinese)

裴信彪, 吴和龙, 马萍, 严永峰, 郝鹏, 白越. 搭载光谱遥感载荷的多旋翼无人机控制系统设计与试验[J]. 红外与激光工程, 2019, 48(1): 0118003. Pei Xinbiao, Wu Helong, Ma Ping, Yan Yongfeng, Hao Peng, Bai Yue. Design and experiment of multi rotor UAV control system with spectral remote sensing load[J]. Infrared and Laser Engineering, 2019, 48(1): 0118003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!