Journal of Innovative Optical Health Sciences, 2018, 11 (4): 1850014, Published Online: Oct. 6, 2018  

An image segmentation framework for extracting tumors from breast magnetic resonance images

Author Affiliations
1 School of Computer and Software, Nanjing University of Information Science and Technology, P. R. China
2 Center for Applied Informatics Victoria University, Australia
3 Center for Functional Onco-Imaging of the Department of Radiological Sciences, University of California Irvine, USA
4 Department of Radiology E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
5 Peter MacCallum Cancer Centre, Australia
Copy Citation Text

Le Sun, Jinyuan He, Xiaoxia Yin, Yanchun Zhang, Jeon-Hor Chen, Tomas Kron, Min-Ying Su. An image segmentation framework for extracting tumors from breast magnetic resonance images[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850014.

References

[1] P. Ghamisi, M. S. Couceiro, F. M. Martins, J. A. Benediktsson, “Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization," IEEE Trans. Geosci. Remote Sens. 52(5), 2382–2394 (2014).

[2] D. L. Pham, C. Xu, J. L. Prince, “Current methods in medical image segmentation," Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000).

[3] J. Ma, A. Jemal, Breast cancer statistics, Breast Cancer Metastasis and Drug Resistance, pp. 1–18, Springer, New York (2013).

[4] W. Chen, M. L. Giger, U. Bick, “A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images," Acad. Radiol. 13(1), 63–72 (2006).

[5] N. Gordillo, E. Montseny, P. Sobrevilla, “State-ofthe-art survey on MRI brain tumor segmentation," Magn. Reson. Imag. 31(8), 1426–1438 (2013).

[6] A. B. Ashraf, S. C. Gavenonis, D. Daye, C. Mies, M. A. Rosen, D. Kontos, “A multichannel Markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk," IEEE Trans. Med. Imag. 32(4), 637–648 (2013).

[7] G. P. Liney, M. Sreenivas, P. Gibbs, R. Garcia-Alvarez, L. W. Turnbull, “Breast lesion analysis of shape technique: Semiautomated vs. manual morphological description," J. Magn. Reson. Imag. 23(4), 493–498 (2006).

[8] W. Chen, M. L. Giger, L. Lan, U. Bick, “Computerized interpretation of breast MRI: Investigation of enhancement-variance dynamics," Med. Phys. 31(5), 1076–1082 (2004).

[9] K. Nie, J. H. Chen, J. Y. Hon, Y. Chu, O. Nalcioglu, M. Y. Su, “Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI," Acad. Radiol. 15(12), 1513–1525 (2008).

[10] N. Gordillo, E. Montseny, P. Sobrevilla, “State-ofthe-art survey on MRI brain tumor segmentation," Magn. Reson. Imag. 31(8), 1426–1438 (2013).

[11] N. Otsu, “A threshold selection method from graylevel histograms," IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).

[12] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods," IEEE Trans. Pattern Anal.Mach. Intell. 34(11), 2274–2282 (2012).

[13] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, L. Shao, “Real-time superpixel segmentation by DBSCAN clustering algorithm," IEEE Trans. Image Process. 25(12), 5933–5942 (2016).

[14] S. Kotsiantis, “Combining bagging, boosting, rotation forest and random subspace methods," Artif. Intell. Rev. 35(3), 223–240 (2011).

[15] J. Li, X. Li, B. Yang, X. Sun, Segmentation-based image copy move forgery detection scheme, IEEE Transactions on Information Forensics and Security 10(3), 507–518 (2015).

[16] M. Gong, Y. Liang, J. Shi, W. Ma, J. Ma, “Fuzzy c-means clustering with local information and kernel metric for image segmentation," IEEE Trans. Image Process. 22(2), 573–584 (2013).

[17] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. M. Jodoin, H. Larochelle, “Brain tumor segmentation with deep neural networks," Med. Image Anal. 35, 18–31 (2017).

[18] N. Sauwen, M. Acou, S. Van Cauter, D. M. Sima, J. Veraart, F. Maes, U. Himmelreich, E. Achten, S. Van Huffel, “Comparison of unsupervised classi-fication methods for brain tumor segmentation using multi-parametric MRI," NeuroImage 12, 753–764 (2016).

[19] S. Pereira, A. Pinto, V. Alves, C. A. Silva, “Brain tumor segmentation using convolutional neural networks in MRI images," IEEE Trans. Med. Imag. 35(5), 1240–1251 (2016).

[20] A. Sehgal, S. Goel, P. Mangipudi, A. Mehra, D. Tyagi, Automatic brain tumor segmentation and extraction in MR images, Conf. Advances in Signal Processing (CASP), pp. 104–107, IEEE, Pune, India, (2016).

[21] A. Q. Al-Faris, U. K. Ngah, N. A. M. Isa, I. L. Shuaib, Breast MRI tumor segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering, Soft Computing in Industrial Applications, pp. 49–60, Springer, Cham (2014).

[22] X. X. Yin, S. Hadjiloucas, J. H. Chen, Y. Zhang, J. L. Wu, M. Y. Su, “Correction: Tensor-based multichannel reconstruction for breast tumors identification from DCE-MRIs," PLoS One 12(4), e0176133 (2017).

[23] T. Pevny, P. Bas, J. Fridrich, “Steganalysis by subtractive pixel adjacency matrix," IEEE Trans. Inf. Forensics Sec. 5(2), 215–224 (2014).

[24] P. Koversi, Image segmentation using SLIC superpixels and DBSCAN clustering (2014), http://www.peterkovesi.com/projects/segmentation/. Accessed on September 2017.

[25] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, In Proc. Thirteenth Int. Conf. Machine Learning, pp. 148–156, San Francisco, Morgan Kaufmann, (1996).

[26] R. M. Haralick, K. Shanmugam, Textural features for image classification, IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973).

[27] L. K. Soh, C. Tsatsoulis, “Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices," IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999).

[28] N. V. Chawla, K. W. Bowyer, L. O. Hall et al., “SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res. 16, 321–357 (2002).

[29] J. A. K. Suykens, J. Vandewalle, “Least squares support vector machine classifiers," Neural Process. Lett. 9(3), 293–300 (1999).

[30] L. Rish, An empirical study of the naive bayes classifier, IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46, IBM, New York (2001).

[31] M. K. Hu, “Visual pattern recognition by moment invariants," IRE Trans. Inf. Theory 8(2), 179–187 (1962).

[32] B. Irving, P. Taylor, A. Todd-Pokropek, 3D segmentation of the airway tree using a morphology based method, Proc. of Second Int. Workshop on Pulmonary Image Analysis, pp. 297–307 (2009).

[33] A. Usinskas, B. Tomandl, P. Hastreiter, K. Spinnler, T. Wittenberg, Improvements on the gray level cooccurrence matrix technique to compute ischemic stroke volume, Bildverarbeitung f€ur die Medizin, pp. 267–270 (2002).

Le Sun, Jinyuan He, Xiaoxia Yin, Yanchun Zhang, Jeon-Hor Chen, Tomas Kron, Min-Ying Su. An image segmentation framework for extracting tumors from breast magnetic resonance images[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850014.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!