Journal of Innovative Optical Health Sciences, 2018, 11 (4): 1850014, Published Online: Oct. 6, 2018  

An image segmentation framework for extracting tumors from breast magnetic resonance images

Author Affiliations
1 School of Computer and Software, Nanjing University of Information Science and Technology, P. R. China
2 Center for Applied Informatics Victoria University, Australia
3 Center for Functional Onco-Imaging of the Department of Radiological Sciences, University of California Irvine, USA
4 Department of Radiology E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
5 Peter MacCallum Cancer Centre, Australia
Abstract
Magnetic resonance imaging (MRI) has been a prevalence technique for breast cancer diagnosis. Computer-aided detection and segmentation of lesions from MRIs plays a vital role for the MRIbased disease analysis. There are two main issues of the existing breast lesion segmentation techniques: requiring manual delineation of Regions of Interests (ROIs) as a step of initialization; and requiring a large amount of labeled images for model construction or parameter learning, while in real clinical or experimental settings, it is highly challenging to get su±cient labeled MRIs. To resolve these issues, this work proposes a semi-supervised method for breast tumor segmentation based on super voxel strategies. After image segmentation with advanced cluster techniques, we take a supervised learning step to classify the tumor and nontumor patches in order to automatically locate the tumor regions in an MRI. To obtain the optimal performance of tumor extraction, we take extensive experiments to learn parameters for tumor segmentation and classification, and design 225 classifiers corresponding to different parameter settings. We call the proposed method as Semi-supervised Tumor Segmentation (SSTS), and apply it to both mass and nonmass lesions. Experimental results show better performance of SSTS compared with five state-of-the-art methods.
References

[1] P. Ghamisi, M. S. Couceiro, F. M. Martins, J. A. Benediktsson, “Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization," IEEE Trans. Geosci. Remote Sens. 52(5), 2382–2394 (2014).

[2] D. L. Pham, C. Xu, J. L. Prince, “Current methods in medical image segmentation," Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000).

[3] J. Ma, A. Jemal, Breast cancer statistics, Breast Cancer Metastasis and Drug Resistance, pp. 1–18, Springer, New York (2013).

[4] W. Chen, M. L. Giger, U. Bick, “A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images," Acad. Radiol. 13(1), 63–72 (2006).

[5] N. Gordillo, E. Montseny, P. Sobrevilla, “State-ofthe-art survey on MRI brain tumor segmentation," Magn. Reson. Imag. 31(8), 1426–1438 (2013).

[6] A. B. Ashraf, S. C. Gavenonis, D. Daye, C. Mies, M. A. Rosen, D. Kontos, “A multichannel Markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk," IEEE Trans. Med. Imag. 32(4), 637–648 (2013).

[7] G. P. Liney, M. Sreenivas, P. Gibbs, R. Garcia-Alvarez, L. W. Turnbull, “Breast lesion analysis of shape technique: Semiautomated vs. manual morphological description," J. Magn. Reson. Imag. 23(4), 493–498 (2006).

[8] W. Chen, M. L. Giger, L. Lan, U. Bick, “Computerized interpretation of breast MRI: Investigation of enhancement-variance dynamics," Med. Phys. 31(5), 1076–1082 (2004).

[9] K. Nie, J. H. Chen, J. Y. Hon, Y. Chu, O. Nalcioglu, M. Y. Su, “Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI," Acad. Radiol. 15(12), 1513–1525 (2008).

[10] N. Gordillo, E. Montseny, P. Sobrevilla, “State-ofthe-art survey on MRI brain tumor segmentation," Magn. Reson. Imag. 31(8), 1426–1438 (2013).

[11] N. Otsu, “A threshold selection method from graylevel histograms," IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).

[12] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods," IEEE Trans. Pattern Anal.Mach. Intell. 34(11), 2274–2282 (2012).

[13] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, L. Shao, “Real-time superpixel segmentation by DBSCAN clustering algorithm," IEEE Trans. Image Process. 25(12), 5933–5942 (2016).

[14] S. Kotsiantis, “Combining bagging, boosting, rotation forest and random subspace methods," Artif. Intell. Rev. 35(3), 223–240 (2011).

[15] J. Li, X. Li, B. Yang, X. Sun, Segmentation-based image copy move forgery detection scheme, IEEE Transactions on Information Forensics and Security 10(3), 507–518 (2015).

[16] M. Gong, Y. Liang, J. Shi, W. Ma, J. Ma, “Fuzzy c-means clustering with local information and kernel metric for image segmentation," IEEE Trans. Image Process. 22(2), 573–584 (2013).

[17] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. M. Jodoin, H. Larochelle, “Brain tumor segmentation with deep neural networks," Med. Image Anal. 35, 18–31 (2017).

[18] N. Sauwen, M. Acou, S. Van Cauter, D. M. Sima, J. Veraart, F. Maes, U. Himmelreich, E. Achten, S. Van Huffel, “Comparison of unsupervised classi-fication methods for brain tumor segmentation using multi-parametric MRI," NeuroImage 12, 753–764 (2016).

[19] S. Pereira, A. Pinto, V. Alves, C. A. Silva, “Brain tumor segmentation using convolutional neural networks in MRI images," IEEE Trans. Med. Imag. 35(5), 1240–1251 (2016).

[20] A. Sehgal, S. Goel, P. Mangipudi, A. Mehra, D. Tyagi, Automatic brain tumor segmentation and extraction in MR images, Conf. Advances in Signal Processing (CASP), pp. 104–107, IEEE, Pune, India, (2016).

[21] A. Q. Al-Faris, U. K. Ngah, N. A. M. Isa, I. L. Shuaib, Breast MRI tumor segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering, Soft Computing in Industrial Applications, pp. 49–60, Springer, Cham (2014).

[22] X. X. Yin, S. Hadjiloucas, J. H. Chen, Y. Zhang, J. L. Wu, M. Y. Su, “Correction: Tensor-based multichannel reconstruction for breast tumors identification from DCE-MRIs," PLoS One 12(4), e0176133 (2017).

[23] T. Pevny, P. Bas, J. Fridrich, “Steganalysis by subtractive pixel adjacency matrix," IEEE Trans. Inf. Forensics Sec. 5(2), 215–224 (2014).

[24] P. Koversi, Image segmentation using SLIC superpixels and DBSCAN clustering (2014), http://www.peterkovesi.com/projects/segmentation/. Accessed on September 2017.

[25] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, In Proc. Thirteenth Int. Conf. Machine Learning, pp. 148–156, San Francisco, Morgan Kaufmann, (1996).

[26] R. M. Haralick, K. Shanmugam, Textural features for image classification, IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973).

[27] L. K. Soh, C. Tsatsoulis, “Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices," IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999).

[28] N. V. Chawla, K. W. Bowyer, L. O. Hall et al., “SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res. 16, 321–357 (2002).

[29] J. A. K. Suykens, J. Vandewalle, “Least squares support vector machine classifiers," Neural Process. Lett. 9(3), 293–300 (1999).

[30] L. Rish, An empirical study of the naive bayes classifier, IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46, IBM, New York (2001).

[31] M. K. Hu, “Visual pattern recognition by moment invariants," IRE Trans. Inf. Theory 8(2), 179–187 (1962).

[32] B. Irving, P. Taylor, A. Todd-Pokropek, 3D segmentation of the airway tree using a morphology based method, Proc. of Second Int. Workshop on Pulmonary Image Analysis, pp. 297–307 (2009).

[33] A. Usinskas, B. Tomandl, P. Hastreiter, K. Spinnler, T. Wittenberg, Improvements on the gray level cooccurrence matrix technique to compute ischemic stroke volume, Bildverarbeitung f€ur die Medizin, pp. 267–270 (2002).

Le Sun, Jinyuan He, Xiaoxia Yin, Yanchun Zhang, Jeon-Hor Chen, Tomas Kron, Min-Ying Su. An image segmentation framework for extracting tumors from breast magnetic resonance images[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850014.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!