中国激光, 2020, 47 (2): 0207004, 网络出版: 2020-02-21   

光学相干层析显微成像的技术与应用 下载: 2964次特邀综述

Optical Coherence Microscopy and Its Application
作者单位
浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
引用该论文

韩涛, 邱建榕, 王迪, 孟佳, 刘智毅, 丁志华. 光学相干层析显微成像的技术与应用[J]. 中国激光, 2020, 47(2): 0207004.

Han Tao, Qiu Jianrong, Wang Di, Meng Jia, Liu Zhiyi, Ding Zhihua. Optical Coherence Microscopy and Its Application[J]. Chinese Journal of Lasers, 2020, 47(2): 0207004.

参考文献

[1] Swanson E A, Izatt J A, Hee M R, et al. In vivo retinal imaging by optical coherence tomography[J]. Optics Letters, 1993, 18(21): 1864-1866.

[2] Wojtkowski M, Srinivasan V, Fujimoto J G, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography[J]. Ophthalmology, 2005, 112(10): 1734-1746.

[3] Chen Z Y, Shen Y, Bao W, et al. Identification of surface defects on glass by parallel spectral domain optical coherence tomography[J]. Optics Express, 2015, 23(18): 23634-23646.

[4] Dansingani K K, Balaratnasingam C, Naysan J, et al. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography[J]. Retina, 2016, 36(3): 499-516.

[5] Bouma B E, Villiger M, Otsuka K, et al. Intravascular optical coherence tomography [Invited][J]. Biomedical Optics Express, 2017, 8(5): 2660-2686.

[6] Ang M, Baskaran M, Werkmeister R M, et al. Anterior segment optical coherence tomography[J]. Progress in Retinal and Eye Research, 2018, 66: 132-156.

[7] 斯培剑, 王玲, 徐铭恩. 基于光学相干层析成像技术的肿瘤细胞侵袭成像[J]. 中国激光, 2019, 46(9): 0907003.

    Si P J, Wang L, Xu M E. Tumor cell invasion imaging based on optical coherence tomography[J]. Chinese Journal of Lasers, 2019, 46(9): 0907003.

[8] Yan Y Z, Ding Z H, Shen Y, et al. High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy[J]. Optics Express, 2013, 21(22): 25734-25743.

[9] Bao W, Ding Z H, Li P, et al. Orthogonal dispersive spectral-domain optical coherence tomography[J]. Optics Express, 2014, 22(8): 10081-10090.

[10] 沈毅, 陈志彦, 邱建榕, 等. 并行谱域光学相干层析成像技术的研究进展[J]. 中国激光, 2018, 45(2): 0207004.

    Shen Y, Chen Z Y, Qiu J R, et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chinese Journal of Lasers, 2018, 45(2): 0207004.

[11] Siddiqui M, Nam A S, Tozburun S, et al. High-speed optical coherence tomography by circular interferometric ranging[J]. Nature Photonics, 2018, 12(2): 111-116.

[12] Israelsen N M, Petersen C R, Barh A, et al. Real-time high-resolution mid-infrared optical coherence tomography[J]. Light: Science & Applications, 2019, 8: 11.

[13] Federici A, Dubois A. Full-field optical coherence microscopy with optimized ultrahigh spatial resolution[J]. Optics Letters, 2015, 40(22): 5347-5350.

[14] Schmitt J M, Yadlowsky M J, Bonner R F. Subsurface imaging of living skin with optical coherence microscopy[J]. Dermatology, 1995, 191(2): 93-98.

[15] Tripathi S, Davis B J. Toussaint K C Jr, et al. Determination of the second-order nonlinear susceptibility elements of a single nanoparticle using coherent optical microscopy[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(1): 015401.

[16] Srinivasan V J, Radhakrishnan H, Jiang J Y, et al. Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast[J]. Optics Express, 2012, 20(3): 2220-2239.

[17] Min E, Lee J, Vavilin A, et al. Wide-field optical coherence microscopy of the mouse brain slice[J]. Optics Letters, 2015, 40(19): 4420-4423.

[18] Curatolo A, Villiger M, Lorenser D, et al. Ultrahigh-resolution optical coherence elastography[J]. Optics Letters, 2016, 41(1): 21-24.

[19] Chirskaya V, Margaryants B, Zhukova V. The study of plant tissue by optical coherent microscopy method[J]. Journal of Physics: Conference Series, 2016, 735(1): 012084.

[20] Marvin M. Microscopy apparatus: US3013467[P/OL].1961-12-19[2019-10-07]. https:∥patents.glgoo.top/patent/US3013467A/en.

[21] Sandison D R, Webb W W. Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes[J]. Applied Optics, 1994, 33(4): 603-615.

[22] Huang D, Swanson E, Lin C, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[23] Izatt J A, Hee M R, Owen G M, et al. Optical coherence microscopy in scattering media[J]. Optics Letters, 1994, 19(8): 590-592.

[24] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1/2): 43-48.

[25] Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-894.

[26] de Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 2003, 28(21): 2067-2069.

[27] Choma M, Sarunic M, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.

[28] Beaurepaire E, Boccara A C, Lebec M, et al. Full-field optical coherence microscopy[J]. Optics Letters, 1998, 23(4): 244-246.

[29] Dubois A, Vabre L, Boccara A C, et al. High-resolution full-field optical coherence tomography with a Linnik microscope[J]. Applied Optics, 2002, 41(4): 805-812.

[30] Li C, Zeitler J A, Dong Y, et al. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography[J]. Journal of Pharmaceutical Sciences, 2014, 103(1): 161-166.

[31] Heise B, Schausberger S E, Häuser S, et al. Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research[J]. Optical Fiber Technology, 2012, 18(5): 403-410.

[32] Laude B, de Martino A, Drévillon B, et al. Full-field optical coherence tomography with thermal light[J]. Applied Optics, 2002, 41(31): 6637-6645.

[33] Schausberger S E, Heise B, Bernstein S, et al. Full-field optical coherence microscopy with Riesz transform-based demodulation for dynamic imaging[J]. Optics Letters, 2012, 37(23): 4937-4939.

[34] Choi W J, Jeon D I, Ahn S G, et al. Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution[J]. Optics Express, 2010, 18(22): 23285-23295.

[35] Laude B, de Martino A, Drevillon B, et al. Full-field optical coherence tomography with thermal light[J]. Applied Optics, 2002, 41(31): 6637-6645.

[36] Schmitt J M, Lee S L, Yung K M. An optical coherence microscope with enhanced resolving power in thick tissue[J]. Optics Communications, 1997, 142(4/5/6): 203-207.

[37] Aguirre A D, Hsiung P, Ko T H, et al. High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging[J]. Optics Letters, 2003, 28(21): 2064-2066.

[38] 唐弢, 赵晨, 陈志彦, 等. 超高分辨光学相干层析成像技术与材料检测应用[J]. 物理学报, 2015, 64(17): 174201.

    Tang T, Zhao C, Chen Z Y, et al. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials[J]. Acta Physica Sinica, 2015, 64(17): 174201.

[39] Marchand P J, Bouwens A, Szlag D, et al. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography[J]. Biomedical Optics Express, 2017, 8(7): 3343-3359.

[40] Yadlowsky M J, Schmitt J M, Bonner R F. Multiple scattering in optical coherence microscopy[J]. Applied Optics, 1995, 34(25): 5699-5707.

[41] Yadlowsky M J, Schmitt J M, Bonner R F. Contrast and resolution in the optical-coherence microscopy of dense biological tissue[J]. Proceedings of SPIE, 1995, 2387: 193-203.

[42] Desjardins A E, Vakoc B J, Tearney G J, et al. Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging[J]. Optics Express, 2006, 14(11): 4736-4745.

[43] Chen C L, Shi W S, Deorajh R, et al. Beam-shifting technique for speckle reduction and flow rate measurement in optical coherence tomography[J]. Optics Letters, 2018, 43(24): 5921-5924.

[44] Liu S Y. Lamont M R E, Mulligan J A, et al. Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle[J]. Biomedical Optics Express, 2018, 9(10): 4919-4935.

[45] Winetraub Y, Wu C, Collins G P, et al. Upper limit for angular compounding speckle reduction[J]. Applied Physics Letters, 2019, 114(21): 211101.

[46] Karamata B, Leutenegger M, Laubscher M, et al. Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography[J]. Journal of the Optical Society of America A, 2005, 22(7): 1380-1388.

[47] Choi Y, Hosseini P, Choi W, et al. Dynamic speckle illumination wide-field reflection phase microscopy[J]. Optics Letters, 2014, 39(20): 6062-6065.

[48] Ogien J, Dubois A. High-resolution full-field optical coherence microscopy using a broadband light-emitting diode[J]. Optics Express, 2016, 24(9): 9922-9931.

[49] Stremplewski P, Auksorius E, Wnuk P, et al. In vivo volumetric imaging by crosstalk-free full-field OCT[J]. Optica, 2019, 6(5): 608-617.

[50] Hitzenberger C K, Baumgartner A, Drexler W, et al. Dispersion effects in partial coherence interferometry: implications for intraocular ranging[J]. Journal of Biomedical Optics, 1999, 4(1): 144-152.

[51] Fercher A, Hitzenberger C, Sticker M, et al. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography[J]. Optics Express, 2001, 9(12): 610-615.

[52] Lee CY, Yang PN, Tsai LH, et al. Fourier domain optical coherence tomography and digital algorithm for dispersion compensation[C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, United States. Washington, D.C.: OSA, 2017: JW2A. 49.

[53] Pan L H, Wang X Z, Li Z L, et al. Depth-dependent dispersion compensation for full-depth OCT image[J]. Optics Express, 2017, 25(9): 10345-10354.

[54] Oh W Y, Bouma B E, Iftimia N, et al. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera[J]. Optics Express, 2006, 14(2): 726-735.

[55] Qi B, Phillip Himmer A, Maggie Gordon L, et al. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror[J]. Optics Communications, 2004, 232: 123-128.

[56] Divetia A, Hsieh T H, Zhang J, et al. Dynamically focused optical coherence tomography for endoscopic applications[J]. Applied Physics Letters, 2005, 86(10): 103902.

[57] Hillmann D, Lührs C, Bonin T, et al. Holoscopy: holographic optical coherence tomography[J]. Optics Letters, 2011, 36(13): 2390-2392.

[58] Grebenyuk A A, Ryabukho V P. Numerical correction of coherence gate in full-field swept-source interference microscopy[J]. Optics Letters, 2012, 37(13): 2529-2531.

[59] Grebenyuk A, Federici A, Ryabukho V, et al. Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination[J]. Applied Optics, 2014, 53(8): 1697-1708.

[60] Yamanaka M, Teranishi T, Kawagoe H, et al. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging[J]. Scientific Reports, 2016, 6: 31715.

[61] Yamanaka M, Hayakawa N, Nishizawa N. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band[J]. Journal of Biomedical Optics, 2019, 24(7): 070502.

[62] Ding Z H, Ren H W, Zhao Y H, et al. High-resolution optical coherence tomography over a large depth range with an axicon lens[J]. Optics Letters, 2002, 27(4): 243-245.

[63] Liu L B, Liu C, Howe W C, et al. Binary-phase spatial filter for real-time swept-source optical coherence microscopy[J]. Optics Letters, 2007, 32(16): 2375-2377.

[64] Leitgeb R A, Villiger M, Bachmann A H, et al. Extended focus depth for Fourier domain optical coherence microscopy[J]. Optics Letters, 2006, 31(16): 2450-2452.

[65] Villiger M, Pache C, Lasser T. Dark-field optical coherence microscopy[J]. Optics Letters, 2010, 35(20): 3489-3491.

[66] Mehta K, Zhang P F. Yeo E L L, et al. Dark-field circular depolarization optical coherence microscopy[J]. Biomedical Optics Express, 2013, 4(9): 1683-1691.

[67] Auksorius E, Claude Boccara A. Dark-field full-field optical coherence tomography[J]. Optics Letters, 2015, 40(14): 3272-3275.

[68] Berclaz C, Goulley J, Villiger M, et al. Diabetes imaging: quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy[J]. Biomedical Optics Express, 2012, 3(6): 1365-1380.

[69] Rolland J P, Meemon P, Murali S, et al. Gabor domain optical coherence microscopy[J]. Proceedings of SPIE, 2010, 7556: 75560A.

[70] Rolland J P, Meemon P, Murali S, et al. Gabor-based fusion technique for optical coherence microscopy[J]. Optics Express, 2010, 18(4): 3632-3642.

[71] Canavesi C, Rolland J P. Ten years of Gabor-domain optical coherence microscopy[J]. Applied Sciences, 2019, 9(12): 2565.

[72] Cogliati A, Canavesi C, Hayes A, et al. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy[J]. Optics Express, 2016, 24(12): 13365-13374.

[73] An L, Li P, Shen T T, et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second[J]. Biomedical Optics Express, 2011, 2(10): 2770-2783.

[74] JayaramanV, JiangJ, LiH, et al. OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range[C]∥CLEO: 2011-Laser Applications to Photonic Applications, May 1-6, 2011, Baltimore, Maryland, United States. Washington, D.C.: OSA, 2011: PDPB2.

[75] Choi W, Potsaid B, Jayaraman V, et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source[J]. Optics Letters, 2013, 38(3): 338-340.

[76] Grulkowski I, Liu J J, Potsaid B, et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Optics Letters, 2013, 38(5): 673-675.

[77] Bonin T, Franke G, Hagen-Eggert M, et al. In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s[J]. Optics Letters, 2010, 35(20): 3432-3434.

[78] Zhang K, Kang J U. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT[J]. Optics Express, 2010, 18(22): 23472-23487.

[79] Rasakanthan J, Sugden K, Tomlins P H. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit[J]. Journal of Biomedical Optics, 2011, 16(2): 020505.

[80] Jian Y F, Wong K, Sarunic M V. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering[J]. Journal of Biomedical Optics, 2013, 18(2): 026002.

[81] Wieser W, Draxinger W, Klein T, et al. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s[J]. Biomedical Optics Express, 2014, 5(9): 2963-2977.

[82] Podoleanu A G, Bradu A. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography[J]. Optics Express, 2013, 21(16): 19324-19338.

[83] Bradu A, Podoleanu A G. Calibration-free B-scan images produced by master/slave optical coherence tomography[J]. Optics Letters, 2014, 39(3): 450-453.

[84] Rivet S, Maria M, Bradu A, et al. Complex master slave interferometry[J]. Optics Express, 2016, 24(3): 2885-2904.

[85] Bradu A, Israelsen N M, Maria M, et al. Recovering distance information in spectral domain interferometry[J]. Scientific Reports, 2018, 8: 15445.

[86] Zhang X, Huo T C, Wang C M, et al. Optical computing for optical coherence tomography[J]. Scientific Reports, 2016, 6: 37286.

[87] Zhang W X, Zhang X, Wang C M, et al. Optical computing optical coherence tomography with conjugate suppression by dispersion[J]. Optics Letters, 2019, 44(8): 2077-2080.

[88] Ferrand A, Schleicher K D, Ehrenfeuchter N, et al. Using the NoiSee workflow to measure signal-to-noise ratios of confocal microscopes[J]. Scientific Reports, 2019, 9: 1165.

[89] Wang D P, Xia J. Optics based biomedical imaging: principles and applications[J]. Journal of Applied Physics, 2019, 125(19): 191101.

[90] Thouvenin O, Grieve K, Xiao P, et al. En face coherence microscopy [Invited][J]. Biomedical Optics Express, 2017, 8(2): 622-639.

[91] Tankam P, He Z G, Chu Y J, et al. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases[J]. Optics Letters, 2015, 40(6): 1113-1116.

[92] Tamborski S, Lyu H C, Dolezyczek H, et al. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain[J]. Biomedical Optics Express, 2016, 7(11): 4400-4414.

[93] Baumann B, Woehrer A, Ricken G, et al. Visualization of neuritic plaques in Alzheimer's disease by polarization-sensitive optical coherence microscopy[J]. Scientific Reports, 2017, 7: 43477.

[94] Lichtenegger A, Harper D J, Augustin M, et al. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer's disease brain samples[J]. Biomedical Optics Express, 2017, 8(9): 4007-4025.

[95] Wang H, Akkin T, Magnain C, et al. Polarization sensitive optical coherence microscopy for brain imaging[J]. Optics Letters, 2016, 41(10): 2213-2216.

[96] Patrice T, Zhiguo H, Gilles T, et al. Capabilities of Gabor-domain optical coherence microscopy for the assessment of corneal disease[J]. Journal of Biomedical Optics, 2019, 24(4): 046002.

[97] Liu L, Jia Y L, Takusagawa H L, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. JAMA Ophthalmology, 2015, 133(9): 1045-1052.

[98] Virgili G, Menchini F, Casazza G, et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy[J]. Cochrane Database of Systematic Reviews, 2015.

[99] Chalam K V, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. Journal of Ophthalmic and Vision Research, 2016, 11(1): 84-92.

[100] Petzold A, de Boer J F, Schippling S, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis[J]. The Lancet Neurology, 2010, 9(9): 921-932.

[101] Makhlouf H, Perronet K, Dupuis G, et al. Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination[J]. Optics Letters, 2012, 37(10): 1613-1615.

[102] Grieve K, Ghoubay D, Georgeon C, et al. Three-dimensional structure of the mammalian limbal stem cell niche[J]. Experimental Eye Research, 2015, 140: 75-84.

[103] Liu X J, Liu T, Wen R, et al. Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging[J]. Optics Letters, 2015, 40(7): 1370-1373.

[104] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8): 627-638.

[105] Li W T, Sun X L, Wang Y, et al. In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs[J]. Biomedical Optics Express, 2014, 5(8): 2679-2685.

[106] Nie L M, Huang P, Li W T, et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy[J]. ACS Nano, 2014, 8(12): 12141-12150.

[107] Wu Z Y, Duan F, Zhang J D, et al. In vivo dual-scale photoacoustic surveillance and assessment of burn healing[J]. Biomedical Optics Express, 2019, 10(7): 3425-3433.

[108] Leahy C, Radhakrishnan H, Bernucci M, et al. Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography[J]. Journal of Biomedical Optics, 2016, 21(2): 020502.

[109] Marchand P J, Bouwens A, Bolmont T, et al. Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy[J]. Biomedical Optics Express, 2017, 8(1): 1-15.

[110] Liu S Y, Mulligan J A, Adie S G. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics[J]. Biomedical Optics Express, 2018, 9(7): 3137-3152.

[111] Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

[112] Gildea D. The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review[J]. International Ophthalmology, 2019, 39(10): 2413-2433.

韩涛, 邱建榕, 王迪, 孟佳, 刘智毅, 丁志华. 光学相干层析显微成像的技术与应用[J]. 中国激光, 2020, 47(2): 0207004. Han Tao, Qiu Jianrong, Wang Di, Meng Jia, Liu Zhiyi, Ding Zhihua. Optical Coherence Microscopy and Its Application[J]. Chinese Journal of Lasers, 2020, 47(2): 0207004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!