强激光与粒子束, 2014, 26 (12): 124002, 网络出版: 2015-01-08  

霍尔推力器热模型研究

Thermal model of Hall thruster
作者单位
兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
摘要
为了对霍尔推力器的热分析研究提供准确的能耗加载条件,开展了霍尔推力器稳态工况下的热模型研究。基于等离子体理论,分析放电室内各项能量损耗机理,并建立各能量损耗与推力器工作参数、性能参数和结构参数的相关函数,系统地得到了霍尔推力器的完整热模型。以LHT100推力器为研究对象,热模型计算结果显示: 额定工况下束流能量损耗约889 W,壁面能量损耗约300 W,阳极能量损耗约44 W,电离能量损耗约43 W,辐射能量损耗约34 W等。以此能量损耗作为热边界条件进行有限元分析,并开展热平衡试验进行验证,计算结果与试验结果吻合较好,最大误差小于5%。
Abstract
To provide energy loss loading conditions for the thermal analysis of Hall thruster, a thermal model of Hall thruster is developed. Based on the plasma theory, the mechanism of various energy losses in discharge chamber is analyzed, and related functions are established between these energy losses and operation, performance parameters and structural parameters. At last the complete thermal model of Hall thruster is obtained. The thermal model for LHT100 thruster is calculated. The following results under the steady operation are obtained: the beam energy loss is about 889 W, the energy loss at wall is about 300 W, the anode energy loss is about 44 W, the ionization energy loss is 43 W, and the radiation energy loss is 34 W, respectively. Taking these energy losses as loading conditions to perform finite element thermal analysis and using thermal balance to validate experimentally, the results indicate that the calculated values agree well with the experimental ones, the maximum error is no more than 5%.
参考文献

[1] 张天平.国外离子和霍尔电推进技术最新进展[J].真空与低温, 2006, 12(4):187-190.(Zhang Tianping. Recent international progress in ion and Hall electric propulsions. Vacuum and Cryogenics, 2006, 12(4):187-190)

[2] Filliben J D. Electric thruster systems-technical report[R]. AD-A327009, 1997.

[3] John T Y. Computational modeling of Hall thruster channel wall erosion[D]. Michigan: The University of Michigan, 2008:23-24.

[4] Goebel D M, Katz I. Fundamentals of Electric Propulsion: Ion and Hall thrusters[M]. New Jersey: Wiley, 2008:340-351.

[5] Roche S, Barra S, Bechu S. Thermal analysis of a stationary plasma thruster[R]. AIAA 99-2296, 1992.

[6] Archipov B, Krochak L Z, Maslennikov N Y. Thermal design of the electric propulsion system components[R]. AIAA98-3489, 1998.

[7] Yan Li, Wang Pingyang. Analysis of coupled thermal Hall thruster[C]//Proc of CEPC. 2013, 9:218-221.

[8] Brophy J R, Barnett J W, Sankovic J M. Performance of the stationary plasma thruster: SPT-100[R]. AIAA92-3155, 1992.

[9] Kim V. Main physical features and processes determining the performance of stationary plasma thruster[J]. Journal of Propulsion and Power, 1998, 32(14):5736-5743.

[10] Barral S, Makowski K. Wall material effects in stationary plasma thrusters[J]. Physics of Plasmas, 2003, 10(10):4137-4152.

[11] Hobbs G D, Wesson J A. Heat flow through a Langmuir sheath in the presence of electron emission[J]. Plasma Physics, 1967, 9(7):85-87.

[12] Barano V, Nazarenko Y, Petrosov V. The wear of the channel walls in Hall thruster[R]. IEPC-2001-005, 2001.

[13] 李敏,汤海滨,王立君,等.霍尔推力器放电通道溅射腐蚀计算[J].强激光与粒子束, 2011, 23(10):2757-2762.(Li Min, Tang Haibing, Wang Lijun. Simulation of discharge wall erosion in Hall thruster. High Power Laser and Particle Beams, 2011, 23(10):2757-2762)

[14] 孙明明,顾左,郭宁,等.离子推力器空心阴极热特性模拟分析[J].强激光与粒子束, 2010, 22(5):1149-1152.(Sun Mingming, Gu Zuo, Guo Ning, et al. Thermal analysis of hollow cathodes for ion thruster. High Power Laser and Particle Beams, 2010, 22(5):1149-1152)

[15] 孙明明,张天平,陈娟娟,等.LIPS-200离子推力器热特性模拟分析研究[J].强激光与粒子束, 2014, 26:084002.(Sun Mingming, Zhang Tianping, Chen Juanjuan, et al. Thermal analysis of LIPS-200 ion thruster. High Power Laser and Particle Beams, 2014, 26:084002)

龙建飞, 孙明明, 张天平, 吴先明. 霍尔推力器热模型研究[J]. 强激光与粒子束, 2014, 26(12): 124002. Long Jianfei, Sun Mingming, Zhang Tianping, Wu Xianming. Thermal model of Hall thruster[J]. High Power Laser and Particle Beams, 2014, 26(12): 124002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!