光学学报, 2017, 37 (1): 0106008, 网络出版: 2017-01-13  

微流道中消逝场激励的荧光光源研究

Study on Fluorescent Radiation Excited by Evanescent Field in a Microfluidic Channel
作者单位
云南大学物理系, 云南 昆明650091
摘要
将石英裸光纤植入聚二甲基硅氧烷(PDMS)基片的微流道中, 采用沿光纤轴向光激励、消逝场激励染料分子的方式, 在基片微流道中获得均匀的荧光辐射。实验发现, 在激励光强确定的条件下, 荧光辐射的强度与染料溶液的浓度呈线性正相关关系, 而与包层溶液的折射率呈非线性正相关的关系。用消逝波激励荧光的辐射理论, 很好地解释了实验结果。
Abstract
A bare quartz optical fiber is embedded in a polydimethylsiloxane (PDMS) substrate microfluidic channel, pumped by a continuous wave laser along the fiber axis, and the dye fluorescence excited by evanescent field of the pump beam has been investigated. As the evanescent field of the pump beam is homogeneous along the fiber axis, it is found that the fluorescent emission from the rim of fiber is uniform along the microfluidic channel. The experimental results show that the fluorescent emission intensity strongly depends on the dye concentration and the refractive index of the dye solution, and with the increase of the dye concentration and the refractive index of dye solution, the emitted fluorescent intensity increases accordingly. The observed phenomena have been successfully explained based on the mechanism of evanescent wave pumping fluorescent radiation.
参考文献

[1] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101): 381-386.

[2] Monat C, Domachuk P, Eggleton B J. Integrated optofluidics: a new river of light[J]. Nature Photonics, 2007, 1(2): 106-114.

[3] Schmidt H, Hawkins A R. The photonic integration of non-solid media using optofluidics[J]. Nature Photonics, 2011, 5(10): 598-604.

[4] Wolfe D B, Conroy R S, Garsteckl P, et al. Dynamic control of liquid-core/liquid-cladding optical waveguides[J]. Proceedings of Natural Academy of Sciences of the United States of America, 2004, 101(34): 12434-12438.

[5] Tang S K, Stan C A, Whitesides G M. Dynamically reconfigurable liquid-core/liquid-cladding lens in a microfluidic channel[J]. Lab Chip, 2008, 8(3): 395-401.

[6] Tang S K, Li Z, Abate A R, et al. A multi-color fast-switching microfluidic droplet dye laser[J]. Lab Chip, 2009, 9(19): 2767-2771.

[7] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10): 591-597.

[8] Vezenov D V, Mayers B T, Wolfe D B, et al. Integrated fluorescent light source for optofluidic applications[J]. Applied Physics Letters, 2005, 86(4): 041104.

[9] Lim J M, Kim S H, Choi J H, et al. Fluorescent liquid-core/air-cladding waveguides integrated optofluidic light sources[J]. Lab Chip, 2008, 8(9): 1580-1585.

[10] Zhang Y X, Pu X Y, Zhu K, et al. Threshold property of whispering-gallery-mode fiber lasers pumped by evanescent waves[J]. Journal of the Optical Society of America B, 2011, 28(8): 2048-2056.

[11] 向文丽, 普小云, 白 然,等. 轴向隐失波激励的回音壁模式光纤激光器[J]. 光学学报, 2008, 28(12): 2359-2364.

    Xiang Wenli, Pu Xiaoyun, Bai Ran, et al. Longitudinal evanescent-wave pumped whispering-gallery-mode fiber laser[J]. Acta Optica Sinica, 2008, 28(12): 2359-2364.

[12] 张远宪, 冯 黎, 刘 春,等. 倏逝波激励的回音壁模式激光增益计算[J]. 光学学报, 2012, 32(2): 0214001.

    Zhang Yuanxian, Feng Li, Liu Chun, et al. Gain calculation of a whispering-gallery-mode fiber laser pumped by evanescent waves[J]. Acta Optica Sinica, 2012, 32(2): 0214001.

[13] Sun Y, Shopova S I, Wu C S, et al. Bioinspired optofluidic FRET lasers via DNA scaffolds[J]. Proceedings of Natural Academy of Sciences of the United States of America, 2010, 107(37): 16039-16042.

[14] Chen Q S, Zhang X W, Sun Y Z, et al. Highly sensitive fluorescent protein detection using optofluidic lasers[J]. Lab Chip, 2013, 13(14): 2679-2681.

张远宪, 储玉飞, 普小云. 微流道中消逝场激励的荧光光源研究[J]. 光学学报, 2017, 37(1): 0106008. Zhang Yuanxian, Chu Yufei, Pu Xiaoyun. Study on Fluorescent Radiation Excited by Evanescent Field in a Microfluidic Channel[J]. Acta Optica Sinica, 2017, 37(1): 0106008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!