强激光与粒子束, 2014, 26 (2): 029001, 网络出版: 2014-03-31   

激光沉积修复BT20合金的显微组织和力学性能

Microstructure and mechanical properties of laser deposition repair BT20 alloy
作者单位
沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136
摘要
针对BT20钛合金锻件当量孔损伤进行激光沉积修复试验, 考察了修复试样的组织和力学特点。修复区与基材之间形成了致密冶金结合, Al, Zr, Mo, V合金元素由锻件基体到激光修复区均匀分布, 无宏观偏析, 硬度分布从基材到修复区依次提高。热影响区组织是由基材的双态组织过渡到网篮组织; 修复区组织为粗大的原始柱状β晶, 晶粒内为α/β网篮组织, 晶内α片层取向随机, 宽0.4~0.5 μm。修复过程中发现, 激光加工工艺参数选择不当、坡度过大等原因会造成修复区组织形成气孔和熔合不良等缺陷, 但是通过优化工艺参数可以获得无缺陷修复试样。修复试样的室温静拉伸结果表明, 试样的抗拉强度接近锻件基体强度, 但修复件的韧性比锻件稍有提高。
Abstract
Researches on the laser deposition repair of BT20 alloy forgings having hole damage were carried out, and the microstructure characteristic of laser deposition repair component was analyzed. There was a dense metallurgical bond between the repaired zone and the substrate. The Al, Zr, Mo, V elements were uniformly distributed without fluctuation and segregation from the matrix to the laser repaired zone. The repaired component experienced a continuous microstructural transition from duplex microstructure with equiaxed α and lamellar α/β in the repaired substrate to the epitaxial coarser columnar β with basket weave α/β through heat-affected zone. In the heat affected zone, the microstructure changed from bimodal structure to the basket weave structure gradually, and the repaired zone was characterized by a fine α/β lamellar microstructure with various random orientations, and the α was about 0.4-0.5 μm, which should be related to the rapid solidification and phase transformation during the process. It is found that unsuitable laser process parameters and large hole sloped angle can cause defects such as gas porosities and ill bonding. The results of repaired sample tensile test at room temperature show that the tensile strength approaches to the wrought BT20 alloy, while its toughness is a little higher.
参考文献

[1] 鲍里索娃. 钛合金金相学[M]. 北京: 国防工业出版社, 1986. (Борисова Е А. Металлография титановых сплавов. Beijing: National Defense Industry Press, 1986)

[2] 张小红, 林鑫, 陈静, 等.热处理对激光立体成形TA15合金组织及力学性能的影响[J]. 稀有金属材料与工程, 2011, 40(1): 142-147.(Zhang Xiaohong, Lin Xin, Chen Jing, et al. Effects of heat treatment on the microstructures and mechanical properties of TAl5 titanium alloys by laser solid forming. Rare Metal Materials and Engineering, 2011, 40(1): 142-147)

[3] 王向明, 刘文廷. 飞机钛合金结构设计与应用[M]. 北京: 国防工业出版社, 2010.(Wang Xiangming, Liu Wenting. Design and application of aircraft structure of titanium alloy. Beijing: National Defense Industry Press, 2010)

[4] Zhu Sheng, Guo Yingchun, Yang Pei. Remanufacturing system based on totally automatic MIG surfacing via robot[J]. Journal of Central South University of Technology, 2005, 12(s2): 129-132.

[5] Henderson M B, Arrell D, Larsson R, et al. Nickel based super alloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining, 2004, 9(1): 13-21.

[6] Tan J C, Looney L, Hashmi M S J. Component repair using HVOF thermal spraying[J]. Journal of Materials Processing Technology, 1999, 9293: 203-208.

[7] 刘洪喜, 纪升伟, 蒋业华, 等. 磁场辅助激光熔覆制备Ni60CuMoW复合涂层[J]. 强激光与粒子束, 2012, 24(12): 2901-2905.(Liu Hongxi, Ji Shengwei, Jiang Yehua, et al. Microstructure and property of Ni60CuMo composite coating treated prepared with magnetic field and laser cladding process. High Power Laser and Particle Beams, 2012, 24(12): 2901-2905)

[8] 杨光, 王维, 钦兰云, 等. Ti6Al4V合金表面激光沉积复合涂层的组织和性能[J]. 强激光与粒子束, 2013, 25(10): 2723-2728.(Yang Guang, Wang Wei, Qin Lanyun, et al. Microstructure and property of laser metal deposition composite coating on Ti6Al4V alloy surface. High Power Laser and Particle Beams, 2013, 25(10): 2723-2728)

[9] 林鑫, 薛蕾, 陈静, 等. 钛合金零件的激光成形修复[J]. 航空制造技术, 2010(8): 55-58.(Lin Xin, Xue Lei, Chen Jing, et al. Laser forming repair of titanium alloy parts. Aeronautical Manufacturing Technology, 2010(8): 55-58)

[10] Steen W M. Laser surface cladding[J]. Laser Surface Treatment of Metals, 1988, 12(1): 365-369.

[11] Keicher D M. Using the laser engineering net shaping(LENS) process to produce complex components from a CAD solid model[C] //Proc of SPIE. 1995, 2293: 91-97.

[12] Fokes J A. Developments in laser surface treatment modification and coating[J]. Surface and Coating Technology, 1994, 23(3): 65-71.

[13] 贺瑞军, 王华明. 激光熔化沉积Ti-6Al-2Zr-Mo-V钛合金组织特征研究[J]. 航空材料学报, 2009, 29(6): 18-22.(He Ruijun, Wang Huaming. Microstructure features of laser deposited Ti-6Al-2Zr-Mo-V alloy. Journal of Aeronautical Materials, 2009, 29(6): 18-22)

[14] 席明哲, 高士友. 激光快速成形TA15钛合金热处理组织及其力学性能[J]. 中国激光, 2012, 39: 0103007.(Xi Mingzhe, Gao Shiyou. Heat-treated microstructures and mechanical properties of TA15 titanium alloy fabricated by laser rapid forming. Chinese Journal of Lasers, 2012, 39: 0103007)

[15] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009. (Zhang Zhu, Wang Qunjiao, Mo Wei. Titanium metallography and heat treatment. Beijing: Metallurgical Industry Press, 2009)

[16] 薛蕾, 陈静, 张凤英, 等. 飞机用钛合金零件的激光快速修复[J]. 稀有金属材料与工程, 2006, 35(11): 1817-1821.(Xue Lei, Chen Jing, Zhang Fengying, et al. Laser rapid repair of the aircraft components of titanium alloy. Rare Metal Materials and Engineering, 2006, 35(11): 1817-1821)

钦兰云, 杨光, 王维, 任宇航, 卞宏友. 激光沉积修复BT20合金的显微组织和力学性能[J]. 强激光与粒子束, 2014, 26(2): 029001. Qin Lanyun, Yang Guang, Wang Wei, Ren Yuhang, Bian Hongyou. Microstructure and mechanical properties of laser deposition repair BT20 alloy[J]. High Power Laser and Particle Beams, 2014, 26(2): 029001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!