红外与激光工程, 2016, 45 (2): 0206002, 网络出版: 2016-04-05  

基于频率补偿的窄脉冲量子级联激光器快速驱动技术

A fast driving technique for narrow pulsed quantum cascade lasers with frequency compensation
作者单位
1 中国科学院微电子器件与集成技术重点实验室,北京 100029
2 中国科学院半导体研究所,北京 100083
3 山东大学(威海),山东 威海 264209
摘要
脉冲量子级联激光器(QCL)因自热效应会导致谱线展宽,故需极短的电流脉冲驱动。理论极限线宽所需的脉宽为5~15 ns,但由于环路寄生参数的影响,窄脉冲会引起信号过冲或振荡,因此目前商用的QCL驱动器无法满足这个要求。为获得更理想的激光器线宽,在常规脉冲恒流电路的基础上,采用频率补偿的方法来消除过冲和振荡,并设计了一款稳定的纳秒级激光器驱动电路。实验结果显示该驱动装置实现了峰值电流0~2 A、脉宽8.4~200 ns、上升时间<4 ns、过冲<1%的脉冲电流输出。使用中国科学院半导体研究所研制的波长4.6 μm激光器和傅里叶变换光谱仪进行测试,当驱动脉宽由100 ns减小到10 ns时,激光器线宽由0.35 cm-1线性递减到0.12 cm-1。综合验证表明,所设计的驱动装置实现了稳定的窄脉冲电流输出,尤其适用于量子级联激光器的窄线宽驱动及应用。
Abstract
The line width of pulsed quantum cascade lasers(QCL) increases with the device heating up during the driving pulse, so QCL drivers need to generate ultra-short current pulse. Generally, pulses of 5 ns to 15 ns durations can reach the Fourier transform limit. However, due to the existence of parasitic parameters, narrow pulses will lead to overshoot or oscillation. Therefore, the current commercial QCL drivers can not meet this requirement. To obtain narrower line width of QCLs, a frequency compensation method based on conventional pulse constant current circuit was proposed in this work to eliminate overshoot and oscillation. And a stable pulse laser driving circuit was also designed which can output 0-2 A pulse current, with 8.4-200 ns pulse width, <4 ns rising time, and <1%overshoot. Function test was carried out with a QCL with 4.6 μm center wavelength made from Institute of Semiconductor of ChineseAcademy of Sciences, and a Fourier transform infrared spectroscopy. The laser line width decreased almost linearly from 0.35 cm-1 to 0.12 cm-1, when the driving pulse width decreased from 100 ns to 10 ns. Experimental results show that the driver is able to output stable narrow pulses, which is suitable for narrow line width driving of QCLs and their applications.
参考文献

[1] Kosterev A, Wysocki G, Bakhirkin Y, et al. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics B-Lasers and Optics, 2008, 90(2): 165-176.

[2] Ren W, Farooq A, Davidson D F, et al. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm[J]. Applied Physics B-Lasers and Optics, 2012, 107(3): 849-860.

[3] Namjou K, Cai S, Whittaker E A. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser[J]. Optics Letters, 1998, 23(3): 219-221.

[4] Manne J. Trace gas sensing with pulsed,distributed feedback quantum cascade laser[D]. Alberta: University of Alberta, 2009.

[5] Sandip P, Ozanyan K B, McCann H. A spectroscopic study for detection of carbon-monoxide using mid-infrared techniques for single-pass measurement[C]// Third International Conference on Optical and Laser Diagnostics, 2007: 012020.

[6] 卢凯,刘百玉,白永林,等. 大功率半导体激光器驱动电源的设计[J]. 红外与激光工程, 2012, 41(10): 2680-2684.

    Lu Kai, Liu Baiyu, Bai Yonglin, et al. High power laser diode drive power supply[J]. Infrared and Laser Engineering, 2012, 41(10): 2680-2684. (in Chinese)

[7] 王金花,姚宏宝,刘子星. 高功率窄脉冲激光发射电路分析[J]. 红外与激光工程, 2010, 39(6): 1049-1054.

    Wang Jinhua, Yao Hongbao, Liu Zixing. Analysis of laser emitting circuit with high-power and short-pulse[J]. Infrared and Laser Engineering, 2010, 39(6): 1049-1054. (in Chinese)

[8] 余兆安, 吕铁良,姚志宏,等. 脉冲量子级联激光器驱动电路建模及仿真[J]. 光学精密工程, 2013, 21(增): 120-127.

    Yu Zhaoan, Lv Tieliang, Yao Zhihong, et al. Model and simulation of driving circuits in pulsed quantum cascade lasers[J]. Opt Precision Eng, 2013, 21(S): 120-127. (in Chinese)

[9] Lin M S, Chen C L. An LED driver with pulse current driving technique[J]. IEEE Trans Power Electron, 2012, 27(11) : 4594-4601.

[10] Lun W K, LooK H, Siew-Chong Tan, et al. Bilevel current driving technique for LEDs[J]. IEEE Trans Power Electron, 2009, 24(12): 2920-2932.

[11] Carter B, Brown T R. Handbook of Operational Amplifier Applications[M]. US: Texas Instruments, 2001.

[12] Franco S. Design with Operational Amplifiers and Analog Integrated Circuits[M]. New York: McGraw-Hill, 1988.

[13] Alpes Lasers. Quantum cascade laser user's manual[DB/OL].[2015-02-11]. http://www.alpeslasers.ch.

[14] LDP-3830 independent current limit[DB/OL]. [2015-01-10].http://www.newport.com/Pulsed-Lased-Diode-Driver,-LDP-3830/1013450/1033/info.aspx#tab_Literature.

[15] 张兴亮,郭立红, 张传胜,等. CO2激光器高压脉冲触发系统的设计[J]. 中国光学, 2012, 5(4): 416-422.

    Zhang Xingliang, Guo Lihong, Zhang Chuansheng, et al. Design of high-voltage pulse trigger system for CO2 laser[J]. Chinese Optics, 2012, 5(4): 416-422. (in Chinese)

[16] [日] Michio Okamura. OP Amplifier Circuit Design[M]. Translated by Wang Ling, Xu Yazhen, Li Wuping. Beijing: Science Press, 2004. (in Chinese)

    [日]冈村迪夫. OP放大电路设计[M]. 王玲,徐雅珍,李武平,译. 北京: 科学出版社, 2004.

[17] Lytkine A, Manne J, Jager W, et al. Characterization of a 10.3μm pulsed DFB quantum cascade laser[J]. Spectrochimica Acta Part A, 2006, 63(5): 947-951.

余兆安, 姚志宏, 梁圣法, 张锦川, 吕铁良. 基于频率补偿的窄脉冲量子级联激光器快速驱动技术[J]. 红外与激光工程, 2016, 45(2): 0206002. Yu Zhaoan, Yao Zhihong, Liang Shengfa, Zhang Jinchuan, Lv Tieliang. A fast driving technique for narrow pulsed quantum cascade lasers with frequency compensation[J]. Infrared and Laser Engineering, 2016, 45(2): 0206002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!