光学学报, 2018, 38 (3): 0328003, 网络出版: 2018-04-02   

光子晶体微纳传感技术的理论与实验研究进展 下载: 1802次特邀综述

Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology
作者单位
北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876
引用该论文

王超, 孙富君, 付中原, 周健, 丁兆祥, 田慧平. 光子晶体微纳传感技术的理论与实验研究进展[J]. 光学学报, 2018, 38(3): 0328003.

Wang Chao, Sun Fujun, Fu Zhongyuan, Zhou Jian, Ding Zhaoxiang, Tian Huiping. Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology[J]. Acta Optica Sinica, 2018, 38(3): 0328003.

参考文献

[1] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486.

    John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486.

[2] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059.

    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059.

[3] Foresi J S, Villeneuve P R, Ferrera J, et al. Photonic-bandgap microcavities in optical wageguides[J]. Nature, 1997, 390(6656): 143-145.

    Foresi J S, Villeneuve P R, Ferrera J, et al. Photonic-bandgap microcavities in optical wageguides[J]. Nature, 1997, 390(6656): 143-145.

[4] Lalanne P, Mias S, Hugonin J P. Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities[J]. Optics Express, 2004, 12(3): 458-467.

    Lalanne P, Mias S, Hugonin J P. Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities[J]. Optics Express, 2004, 12(3): 458-467.

[5] Notomi M, Kuramochi E, Taniyama H. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Optics Express, 2008, 16(15): 11095-11102.

    Notomi M, Kuramochi E, Taniyama H. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Optics Express, 2008, 16(15): 11095-11102.

[6] Zain A R, Johnson N P, Sorel M, et al. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)[J]. Optics Express, 2008, 16(16): 12084-12089.

    Zain A R, Johnson N P, Sorel M, et al. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)[J]. Optics Express, 2008, 16(16): 12084-12089.

[7] Deotare P B, Mccutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters, 2009, 94(12): 121106.

    Deotare P B, Mccutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters, 2009, 94(12): 121106.

[8] Quan Q, Loncar M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities[J]. Optics Express, 2011, 19(19): 18529-18542.

    Quan Q, Loncar M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities[J]. Optics Express, 2011, 19(19): 18529-18542.

[9] Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1): 1-5.

    Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1): 1-5.

[10] Yang D, Zhang P, Tian H, et al. Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing[J]. IEEE Photonics Journal, 2015, 7(5): 1-8.

    Yang D, Zhang P, Tian H, et al. Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing[J]. IEEE Photonics Journal, 2015, 7(5): 1-8.

[11] Quan Q, Burgess I B. Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Optics Express, 2011, 19(22): 22191-22197.

    Quan Q, Burgess I B. Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Optics Express, 2011, 19(22): 22191-22197.

[12] Yao K, Shi Y. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing[J]. Optics Express, 2012, 20(24): 27039-27044.

    Yao K, Shi Y. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing[J]. Optics Express, 2012, 20(24): 27039-27044.

[13] Feng C, Feng G Y, Zhou G R, et al. Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity[J]. Laser Physics Letters, 2012, 9(12): 875.

    Feng C, Feng G Y, Zhou G R, et al. Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity[J]. Laser Physics Letters, 2012, 9(12): 875.

[14] Clevenson H, Desjardins P, Gan X, et al. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity[J]. Applied Physics Letters, 2014, 104(24): 241108.

    Clevenson H, Desjardins P, Gan X, et al. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity[J]. Applied Physics Letters, 2014, 104(24): 241108.

[15] Fegadolli W S, Pavarelli N. O'Brien P, et al. Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications[J]. ACS Photonics, 2015, 2(4): 470-474.

    Fegadolli W S, Pavarelli N. O'Brien P, et al. Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications[J]. ACS Photonics, 2015, 2(4): 470-474.

[16] Zhang Y, Han S, Zhang S, et al. High-Q and high-sensitivity photonic crystal cavity sensor[J]. IEEE Photonics Journal, 2015, 7(5): 1-6.

    Zhang Y, Han S, Zhang S, et al. High-Q and high-sensitivity photonic crystal cavity sensor[J]. IEEE Photonics Journal, 2015, 7(5): 1-6.

[17] Zhang X, Zhou G, Shi P, et al. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities[J]. Optics Letters, 2016, 41(6): 1197-1200.

    Zhang X, Zhou G, Shi P, et al. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities[J]. Optics Letters, 2016, 41(6): 1197-1200.

[18] Liang F, Quan Q. Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities[J]. ACS Photonics, 2015, 2(12): 1692-1697.

    Liang F, Quan Q. Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities[J]. ACS Photonics, 2015, 2(12): 1692-1697.

[19] Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity[J]. Optics letters, 2015, 40(22): 5351-5354.

    Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity[J]. Optics letters, 2015, 40(22): 5351-5354.

[20] Huang L, Zhou J, Sun F, et al. Optimization of one dimensional photonic crystal elliptical-hole low-index mode nanobeam cavities for on-chip sensing[J]. Journal of Lightwave Technology, 2016, 34(15): 3496-3502.

    Huang L, Zhou J, Sun F, et al. Optimization of one dimensional photonic crystal elliptical-hole low-index mode nanobeam cavities for on-chip sensing[J]. Journal of Lightwave Technology, 2016, 34(15): 3496-3502.

[21] Sun F, Fu Z, Wang C, et al. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing[J]. Applied Optics, 2017, 56(15): 4363-4368.

    Sun F, Fu Z, Wang C, et al. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing[J]. Applied Optics, 2017, 56(15): 4363-4368.

[22] Wang B, Dündar M A, Nötzel R, et al. Photonic crystal slot nanobeam slow light waveguides for refractive index sensing[J]. Applied Physics Letters, 2010, 97(15): 151105.

    Wang B, Dündar M A, Nötzel R, et al. Photonic crystal slot nanobeam slow light waveguides for refractive index sensing[J]. Applied Physics Letters, 2010, 97(15): 151105.

[23] Xu P, Yao K, Zheng J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing[J]. Optics Express, 2013, 21(22): 26908-26913.

    Xu P, Yao K, Zheng J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing[J]. Optics Express, 2013, 21(22): 26908-26913.

[24] Lin T, Zhang X, Zhou G, et al. Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing[J]. Journal of the Optical Society of America B, 2015, 32(9): 1788-1791.

    Lin T, Zhang X, Zhou G, et al. Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing[J]. Journal of the Optical Society of America B, 2015, 32(9): 1788-1791.

[25] Yaseen M T, Yang Y C, Shih M H, et al. Optimization of high-Q coupled nanobeam cavity for label-free sensing[J]. Sensors, 2015, 15(10): 25868-25881.

    Yaseen M T, Yang Y C, Shih M H, et al. Optimization of high-Q coupled nanobeam cavity for label-free sensing[J]. Sensors, 2015, 15(10): 25868-25881.

[26] Li T, Gao D, Zhang D, et al. High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors[J]. IEEE Photonics Technology Letters, 2016, 28(6): 689-692.

    Li T, Gao D, Zhang D, et al. High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors[J]. IEEE Photonics Technology Letters, 2016, 28(6): 689-692.

[27] Zhang S, Yong Z, Shi Y, et al. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity[J]. Scientific Reports, 2016, 6: 35977.

    Zhang S, Yong Z, Shi Y, et al. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity[J]. Scientific Reports, 2016, 6: 35977.

[28] Yang D, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing[J]. Applied Physics Letters, 2014, 105(6): 063118.

    Yang D, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing[J]. Applied Physics Letters, 2014, 105(6): 063118.

[29] Zhou J, Tian H, Huang L, et al. Parabolic tapered coupled two photonic crystal nanobeam slot cavities for high-FOM biosensing[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1281-1284.

    Zhou J, Tian H, Huang L, et al. Parabolic tapered coupled two photonic crystal nanobeam slot cavities for high-FOM biosensing[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1281-1284.

[30] 陈颖, 曹会莹, 韩帅涛, 等. 含吸收介质的光子晶体法布里-珀罗异质结构的传感特性研究[J]. 光学学报, 2017, 37(2): 0223003.

    陈颖, 曹会莹, 韩帅涛, 等. 含吸收介质的光子晶体法布里-珀罗异质结构的传感特性研究[J]. 光学学报, 2017, 37(2): 0223003.

    Chen Y, Cao H Y, Han S T, et al. Sensing property of photonic crystal Fabry-Pérot heterogeneous structure with absorption medium[J]. Acta Optica Sinica, 2017, 37(2): 0223003.

    Chen Y, Cao H Y, Han S T, et al. Sensing property of photonic crystal Fabry-Pérot heterogeneous structure with absorption medium[J]. Acta Optica Sinica, 2017, 37(2): 0223003.

[31] Tu T, Pang F, Zhu S, et al. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing[J]. Optics Express, 2017, 25(8): 9019-9027.

    Tu T, Pang F, Zhu S, et al. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing[J]. Optics Express, 2017, 25(8): 9019-9027.

[32] Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

    Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

[33] Akahane Y, Asano T, Song B S, et al. Fine-tuned high-Q photonic-crystal nanocavity[J]. Optics Express, 2005, 13(4): 1202-1214.

    Akahane Y, Asano T, Song B S, et al. Fine-tuned high-Q photonic-crystal nanocavity[J]. Optics Express, 2005, 13(4): 1202-1214.

[34] Lai Y, Pirotta S, Urbinati G, et al. Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million[J]. Applied Physics Letters, 2014, 104(24): 096501.

    Lai Y, Pirotta S, Urbinati G, et al. Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million[J]. Applied Physics Letters, 2014, 104(24): 096501.

[35] Tandaechanurat A, Iwamoto S, Nomura M, et al. Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness[J]. Optics Express, 2008, 16(1): 448-455.

    Tandaechanurat A, Iwamoto S, Nomura M, et al. Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness[J]. Optics Express, 2008, 16(1): 448-455.

[36] Yang D, Tian H, Ji Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays[J]. Optics Express, 2011, 19(21): 20023-20034.

    Yang D, Tian H, Ji Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays[J]. Optics Express, 2011, 19(21): 20023-20034.

[37] Chakravarty S, Zou Y, Lai W C, et al. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon[J]. Biosensors & Bioelectronics, 2012, 38(1): 170-176.

    Chakravarty S, Zou Y, Lai W C, et al. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon[J]. Biosensors & Bioelectronics, 2012, 38(1): 170-176.

[38] Nakamura T, Takahashi Y, Tanaka Y, et al. Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components[J]. Optics Express, 2016, 24(9): 9541-9549.

    Nakamura T, Takahashi Y, Tanaka Y, et al. Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components[J]. Optics Express, 2016, 24(9): 9541-9549.

[39] Hsiao F L, Lee C. Computational study of photonic crystals nano-ring resonator for biochemical sensing[J]. IEEE Sensors Journal, 2010, 10(7): 1185-1191.

    Hsiao F L, Lee C. Computational study of photonic crystals nano-ring resonator for biochemical sensing[J]. IEEE Sensors Journal, 2010, 10(7): 1185-1191.

[40] Lai W C, Chakravarty S, Zou Y, et al. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing[J]. Optics Letters, 2012, 37(7): 1208-1210.

    Lai W C, Chakravarty S, Zou Y, et al. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing[J]. Optics Letters, 2012, 37(7): 1208-1210.

[41] Zou Y, Chakravarty S, Kwong D N, et al. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 1-10.

    Zou Y, Chakravarty S, Kwong D N, et al. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 1-10.

[42] Zhou J, Tian H, Yang D, et al. Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on silicon-on-insulator substrate[J]. Optics Communications, 2014, 330(1): 175-183.

    Zhou J, Tian H, Yang D, et al. Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on silicon-on-insulator substrate[J]. Optics Communications, 2014, 330(1): 175-183.

[43] Baker J E, Miller B L. Discrimination of “specific” and “nonspecific” binding in two-dimensional photonic crystals[J]. Optics Express, 2015, 23(6): 7101-7110.

    Baker J E, Miller B L. Discrimination of “specific” and “nonspecific” binding in two-dimensional photonic crystals[J]. Optics Express, 2015, 23(6): 7101-7110.

[44] Baker J E, Sriram R, Miller B L. Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors[J]. Lab ona Chip, 2017, 17(9): 1570-1577.

    Baker J E, Sriram R, Miller B L. Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors[J]. Lab ona Chip, 2017, 17(9): 1570-1577.

[45] Song B S, Noda S, Asano T, et al. Ultra-high-Q photonic double-heterostructure nanocavity[J]. Nature materials, 2005, 4(3): 207-210.

    Song B S, Noda S, Asano T, et al. Ultra-high-Q photonic double-heterostructure nanocavity[J]. Nature materials, 2005, 4(3): 207-210.

[46] Kwon S H, Sünner T, Kamp M, et al. Optimization of photonic crystal cavity for chemical sensing[J]. Optics Express, 2008, 16(16): 11709-11717.

    Kwon S H, Sünner T, Kamp M, et al. Optimization of photonic crystal cavity for chemical sensing[J]. Optics Express, 2008, 16(16): 11709-11717.

[47] Falco A D. O'faolain L, Krauss T F. Chemical sensing in slotted photonic crystal heterostructure cavities[J]. Applied Physics Letters, 2009, 94(6): 063503.

    Falco A D. O'faolain L, Krauss T F. Chemical sensing in slotted photonic crystal heterostructure cavities[J]. Applied Physics Letters, 2009, 94(6): 063503.

[48] Zhang H, Diao Z, et al. . Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 2010, 35(15): 2523-2525.

    Zhang H, Diao Z, et al. . Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 2010, 35(15): 2523-2525.

[49] Caër C. Serna-Ot a'lvaro S F, Zhang W, et al. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration [J]. Optics Letters, 2014, 39(20): 5792-5794.

    Caër C. Serna-Ot a'lvaro S F, Zhang W, et al. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration [J]. Optics Letters, 2014, 39(20): 5792-5794.

[50] García-Rupérez J, Toccafondo V, Bañuls M J, et al. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime[J]. Optics Express, 2010, 18(23): 24276-24286.

    García-Rupérez J, Toccafondo V, Bañuls M J, et al. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime[J]. Optics Express, 2010, 18(23): 24276-24286.

[51] Lai W C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide[J]. Optics Letters, 2011, 36(6): 984-986.

    Lai W C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide[J]. Optics Letters, 2011, 36(6): 984-986.

[52] Zhang Y N, Zhao Y, Wu D, et al. Theoretical research on high sensitivity gas sensor due to slow light in slotted photonic crystal waveguide[J]. Sensors and Actuators B: Chemical, 2012, 173(12): 505-509.

    Zhang Y N, Zhao Y, Wu D, et al. Theoretical research on high sensitivity gas sensor due to slow light in slotted photonic crystal waveguide[J]. Sensors and Actuators B: Chemical, 2012, 173(12): 505-509.

[53] Zhang Y, Zhao Y, Wang Q. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration[J]. Sensors and Actuators B: Chemical, 2013, 184(8): 179-188.

    Zhang Y, Zhao Y, Wang Q. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration[J]. Sensors and Actuators B: Chemical, 2013, 184(8): 179-188.

[54] Dholakia K, Scullion M G, Krauss T F, et al. Enhancement of optical forces using slow light in a photonic crystal waveguide[J]. Optica, 2015, 2(9): 816-821.

    Dholakia K, Scullion M G, Krauss T F, et al. Enhancement of optical forces using slow light in a photonic crystal waveguide[J]. Optica, 2015, 2(9): 816-821.

[55] Zhang X, Yang J, Faggiani R, et al. Interaction between atoms and slow light: a waveguide-design study[J]. Physical Review Applied, 2016, 5(2): 024003.

    Zhang X, Yang J, Faggiani R, et al. Interaction between atoms and slow light: a waveguide-design study[J]. Physical Review Applied, 2016, 5(2): 024003.

[56] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 2002, 65(23): 235112.

    Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 2002, 65(23): 235112.

[57] Beheiry M E, Liu V, Fan S, et al. Sensitivity enhancement in photonic crystal slab biosensors[J]. Optics Express, 2010, 18(22): 22702-22714.

    Beheiry M E, Liu V, Fan S, et al. Sensitivity enhancement in photonic crystal slab biosensors[J]. Optics Express, 2010, 18(22): 22702-22714.

[58] Nicolaou C, Lau W T, Gad R, et al. Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors[J]. Optics Express, 2013, 21(25): 31698-31712.

    Nicolaou C, Lau W T, Gad R, et al. Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors[J]. Optics Express, 2013, 21(25): 31698-31712.

[59] Wang S, Liu Y, Zhao D, et al. Optofluidic Fano resonance photonic crystal refractometric sensors[J]. Applied Physics Letters, 2017, 110(9): 091105.

    Wang S, Liu Y, Zhao D, et al. Optofluidic Fano resonance photonic crystal refractometric sensors[J]. Applied Physics Letters, 2017, 110(9): 091105.

[60] Liu Y, Wang S, Zhao D, et al. High quality factor photonic crystal filter at k≈0 and its application for refractive index sensing[J]. Optics Express, 2017, 25(9): 10536-10545.

    Liu Y, Wang S, Zhao D, et al. High quality factor photonic crystal filter at k≈0 and its application for refractive index sensing[J]. Optics Express, 2017, 25(9): 10536-10545.

[61] Mandal S, Erickson D. Nanoscale optofluidic sensor arrays[J]. Optics Express, 2008, 16(3): 1623-1631.

    Mandal S, Erickson D. Nanoscale optofluidic sensor arrays[J]. Optics Express, 2008, 16(3): 1623-1631.

[62] Mandal S, Goddard J M, Erickson D. A multiplexed optofluidic biomolecular sensor for low mass detection[J]. Lab ona Chip, 2009, 9(20): 2924-2932.

    Mandal S, Goddard J M, Erickson D. A multiplexed optofluidic biomolecular sensor for low mass detection[J]. Lab ona Chip, 2009, 9(20): 2924-2932.

[63] Goddard J M, Mandal S, Nugen S R, et al. Biopatterning for label-free detection[J]. Colloids & Surfaces B Biointerfaces, 2010, 76(1): 375-380.

    Goddard J M, Mandal S, Nugen S R, et al. Biopatterning for label-free detection[J]. Colloids & Surfaces B Biointerfaces, 2010, 76(1): 375-380.

[64] ShiY. Ultracompact high-sensitivity biochemical sensor built with photonic crystal nanobeam cavity[C]. IEEE Nanoelectronics Conference, 2016: 16394112.

    ShiY. Ultracompact high-sensitivity biochemical sensor built with photonic crystal nanobeam cavity[C]. IEEE Nanoelectronics Conference, 2016: 16394112.

[65] Adibi A, Eftekhar A A, Momeni B, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Optics Express, 2011, 19(13): 12356-12364.

    Adibi A, Eftekhar A A, Momeni B, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Optics Express, 2011, 19(13): 12356-12364.

[66] Yang D, Wang C, Ji Y. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array[J]. Optics Express, 2016, 24(15): 16267-16279.

    Yang D, Wang C, Ji Y. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array[J]. Optics Express, 2016, 24(15): 16267-16279.

[67] Yang D, Wang B, Chen X, et al. Ultra-compact on-chip multiplexed sensor array based on dense integration of flexible 1D photonic crystal nanobeam cavity with large free spectral range and high Q-factor[J]. IEEE Photonics Journal, 2017, 9(4): 1-9.

    Yang D, Wang B, Chen X, et al. Ultra-compact on-chip multiplexed sensor array based on dense integration of flexible 1D photonic crystal nanobeam cavity with large free spectral range and high Q-factor[J]. IEEE Photonics Journal, 2017, 9(4): 1-9.

[68] Pal S, Guillermain E, Sriram R, et al. Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing[J]. Biosensors & Bioelectronics, 2011, 26(10): 4024-4031.

    Pal S, Guillermain E, Sriram R, et al. Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing[J]. Biosensors & Bioelectronics, 2011, 26(10): 4024-4031.

[69] Yang D, Tian H, Ji Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays[J]. Optics Express, 2011, 19(21): 20023-20034.

    Yang D, Tian H, Ji Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays[J]. Optics Express, 2011, 19(21): 20023-20034.

[70] Yang D, Tian H, Wu N, et al. Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity[J]. Sensors & Actuators A Physical, 2013, 199(17): 30-36.

    Yang D, Tian H, Wu N, et al. Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity[J]. Sensors & Actuators A Physical, 2013, 199(17): 30-36.

[71] Liu Q, Tian H, Yang D, et al. Nanoscale radius-graded photonic crystal sensor arrays using interlaced and symmetrical resonant cavities for biosensing[J]. Sensors & Actuators A: Physical, 2014, 216(3): 223-230.

    Liu Q, Tian H, Yang D, et al. Nanoscale radius-graded photonic crystal sensor arrays using interlaced and symmetrical resonant cavities for biosensing[J]. Sensors & Actuators A: Physical, 2014, 216(3): 223-230.

[72] Bhattacharya P, Sabarinathan J, et al. . Fluid detection with photonic crystal-based multichannel waveguides[J]. Applied Physics Letters, 2003, 82(8): 1143-1145.

    Bhattacharya P, Sabarinathan J, et al. . Fluid detection with photonic crystal-based multichannel waveguides[J]. Applied Physics Letters, 2003, 82(8): 1143-1145.

[73] Li B. Configuration analysis of sensing element for photonic crystal based NEMS cantilever using dual nano-ring resonator[J]. Sensors & Actuators A: Physical, 2011, 169(2): 352-361.

    Li B. Configuration analysis of sensing element for photonic crystal based NEMS cantilever using dual nano-ring resonator[J]. Sensors & Actuators A: Physical, 2011, 169(2): 352-361.

[74] Yang D, Tian H, Ji Y. Nanoscale low crosstalk photonic crystal integrated sensor array[J]. IEEE Photonics Journal, 2014, 6(1): 1-7.

    Yang D, Tian H, Ji Y. Nanoscale low crosstalk photonic crystal integrated sensor array[J]. IEEE Photonics Journal, 2014, 6(1): 1-7.

[75] Huang L, Tian H, Zhou J, et al. Design low crosstalk ring-slot array structure for label-free multiplexed sensing[J]. Sensors, 2014, 14(9): 15658.

    Huang L, Tian H, Zhou J, et al. Design low crosstalk ring-slot array structure for label-free multiplexed sensing[J]. Sensors, 2014, 14(9): 15658.

[76] Zhou J, Huang L, Fu Z, et al. Higher Q factor and higher extinction ratio with lower detection limit photonic crystal-parallel-integrated sensor array for on-chip optical multiplexing sensing[J]. Applied Optics, 2016, 55(35): 10078-10083.

    Zhou J, Huang L, Fu Z, et al. Higher Q factor and higher extinction ratio with lower detection limit photonic crystal-parallel-integrated sensor array for on-chip optical multiplexing sensing[J]. Applied Optics, 2016, 55(35): 10078-10083.

[77] Yan H, Yang C J, Tang N, et al. Specific detection of antibiotics by silicon on-chip photonic crystal biosensor arrays[J]. IEEE Sensors Journal, 2017, 7(18): 5915-5919.

    Yan H, Yang C J, Tang N, et al. Specific detection of antibiotics by silicon on-chip photonic crystal biosensor arrays[J]. IEEE Sensors Journal, 2017, 7(18): 5915-5919.

[78] Yan H, Zou Y, Chakravarty S, et al. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors[J]. Applied Physics Letters, 2015, 106(12): 229-234.

    Yan H, Zou Y, Chakravarty S, et al. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors[J]. Applied Physics Letters, 2015, 106(12): 229-234.

[79] Zhou J, Huang L, Fu Z, et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1×3 beam splitter and three different single-slot PCNCs[J]. Sensors, 2016, 16(7): 1050.

    Zhou J, Huang L, Fu Z, et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1×3 beam splitter and three different single-slot PCNCs[J]. Sensors, 2016, 16(7): 1050.

[80] Zou Y, Chakravarty S, Zhu L, et al. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays[J]. Applied Physics Letters, 2014, 104(14): 141103.

    Zou Y, Chakravarty S, Zhu L, et al. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays[J]. Applied Physics Letters, 2014, 104(14): 141103.

[81] Chen Y, Liu H, Zhang Z, et al. Planar photonic crystal based multifunctional sensors[J]. Applied Optics, 2017, 56(6): 1775-1780.

    Chen Y, Liu H, Zhang Z, et al. Planar photonic crystal based multifunctional sensors[J]. Applied Optics, 2017, 56(6): 1775-1780.

王超, 孙富君, 付中原, 周健, 丁兆祥, 田慧平. 光子晶体微纳传感技术的理论与实验研究进展[J]. 光学学报, 2018, 38(3): 0328003. Wang Chao, Sun Fujun, Fu Zhongyuan, Zhou Jian, Ding Zhaoxiang, Tian Huiping. Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology[J]. Acta Optica Sinica, 2018, 38(3): 0328003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!