激光与光电子学进展, 2016, 53 (9): 093001, 网络出版: 2016-09-14   

激光拉曼光谱法同步测量液膜厚度与浓度 下载: 975次

Simultaneous Measurement of Film Thickness and Mass Fraction by Raman Spectroscopy
王琴 1,2,*赵畅 1,2杨荟楠 1,2苏明旭 1,2蔡小舒 1,2
作者单位
1 上海理工大学能源与动力工程学院, 上海 200093
2 上海市动力工程多相流与传热重点实验室, 上海 200093
摘要
尿素水溶液液膜厚度和浓度的定量分析对于与其相关的工业过程极为重要,传统的测量方法只能实现厚度和浓度的单独测量。提出了一种基于激光拉曼光谱技术同步测量尿素水溶液液膜厚度和浓度的方法。分别建立尿素水溶液的拉曼光谱特征峰(1004 cm-1,N—C—N对称拉伸振动)相对强度与厚度、浓度的关系曲线,在此基础上建立了尿素水溶液液膜厚度与浓度反演的数学模型。研究结果表明,浓度一定时,强度与厚度(2~10 mm)呈线性关系,厚度的平均测量误差为8.36%;液膜厚度一定时,强度与浓度(5%~40%,质量分数)呈线性相关,浓度的平均测量误差为6.24%。
Abstract
Quantitative analysis of the film thickness and the mass fraction of urea solution is extremely crucial in relevant industrial processes. The traditional method can measure the film thickness or the mass fraction alone independently. A method to simultaneously measure the thickness and the mass fraction of urea solution is proposed based on the Raman spectroscopy. Through setting the standard curves reflecting the dependence of the relative intensity of characteristic Raman peak (1004 cm-1, belonging to N-C-N symmetric stretching vibration) on the thickness and the mass fraction, mathematical models are established to retrieve the film thickness and the mass fraction of the urea solution. The results reveal that the intensity is linearly related to the thickness (2-10 mm) when the solution concentration is constant, and the average measurement error for the film thickness is 8.36%. The intensity is linearly related to the mass fraction (5%-40%) when the film thickness is constant, and the average measurement error for the mass fraction is 6.24%.
参考文献

[1] Khan K M, Krishna H, Majumder S K, et al. Detection of urea adulteration in milk using near-infrared Raman spectroscopy[J]. Food Anal Method, 2014, 8(1): 93-102.

[2] 郝虎, 宋元宗, 肖昕, 等. 尿素酶预处理气相色谱质谱法在甲基丙二酸尿症诊断中的应用[J]. 实用儿科临床杂志, 2008, 23(8): 574-576.

    Hao Hu, Song Yuanzong, Xiao Xin, et al. Application of urease pretreatment-gas chromatography-mass spectrometry in the diagnosis of methylmalnic aciduria[J]. Journal of Applied Clinical Pediatrics, 2008, 23(8): 574-576.

[3] 宋波. 汽车尾气处理技术及展望[J]. 科技信息, 2012(25): 408-409.

[4] 刘海林, 郑丽行, 樊小林. 折光率法在控释尿素释放率和肥效期检测中的应用[J]. 西北农林科技大学学报(自然科学版), 2013, 41(3): 141-146.

    Liu Hailin, Zheng Lixing, Fan Xiaolin. Application of refractive index method to test nutrient release rate and longevity of controlled release urea[J]. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(3): 141-146.

[5] 杨荟楠, 郭晓龙, 杨斌, 等. 激光光谱法同步测量尿素水溶液液膜厚度与浓度[J]. 化工学报, 2015, 66(2): 759-763.

    Yang Huinan, Guo Xiaolong, Yang Bin, et al. Simultaneous measurement of film thickness and concentration of urea-water solution by laser spectroscopy[J]. CIESC Journal, 2015, 66(2): 759-763.

[6] 杨荟楠, 郭晓龙, 苏明旭, 等. 基于TDLAS技术在线测量气流道内液膜动态厚度[J]. 中国激光, 2014, 34(12): 217-222.

    Yang Huinan, Guo Xiaolong, Su Mingxu, et al. Liquid-water film-thickness online measurement in a flow channel by TDLAS[J]. Chinese J Lasers, 2014, 34(12): 217-222.

[7] 王文武, 李春国, 王新军, 等. 金属表面流动液膜厚度的电导法测量技术研究[J]. 东方汽轮机, 2010(1): 21-25.

    Wang Wenwu, Li Chunguo, Wang Xinjun, et al. A study on measurement of thickness of thin liquid film on metal surface[J]. Dongfang Turbine, 2010(1): 21-25.

[8] 崔洁, 陈雪莉, 王清立, 等. 电导法测量新型旋风分离器内液膜的分布规律[J]. 化工学报, 2009, 60(6): 1487-1493.

    Cui Jie, Chen Xueli, Wang Qingli, et al. Double-parallel conductance probe for measuring thickness of liquid film in new-type cyclone separator[J]. CIESC Journal, 2009, 60(6): 1487-1493.

[9] Ozgü M R, Chen J C, Eberhardt N. A capacitance method for measurement of film thickness in two-phase flow[J]. Rev Sci Instrum, 1973, 44(12): 1714-1716.

[10] 杨亚飞, 王国强, 崔勇, 等. 折光法混药浓度在线检测装置的设计与试验研究[J]. 农机化研究, 2016, 38(2): 158-161.

    Yang Yafei, Wang Guoqiang, Cui Yong, et al. Design and experimental study on online detector of mixing concentration[J]. Journal of Agricultural Mechanization Research, 2016, 38(2): 158-161.

[11] 朱晓明. 超声波测浓度中声两相流体积浓度与衰减系数的关系[J]. 科技风, 2013 (16): 29-30.

[12] Beattie R J, Bell S J, Farmer L J, et al. Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside[J]. Meat Sci, 2004, 66(4): 903-913.

[13] Jiao L, Wang X, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons[J]. Nat Nanotechnol, 2010, 5(5): 321-325.

[14] Umar A, Kim S H, Lee Y S, et al. Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: Structural and optical properties[J]. J Cryst Growth, 2005, 282(1): 131-136.

[15] Jehlika J, Edwards H G M, Culka A. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: Exobiological applications[J]. Philos Trans R Soc of London A, 2010, 368(1922): 3109-3125.

[16] Greszik D, Yang H, Dreier T, et al. Measurement of water film thickness by laser-induced fluorescence and Raman imaging[J]. Appl Phys B, 2011, 102(1): 123-132.

[17] Eckbreth A C. Laser diagnostics for combustion, temperature and species[M]. Boca Raton: CRC Press, 1996.

[18] 赵虹霞, 干福熹. 拉曼光谱技术在中国古玉、 古玉器鉴定和研究中的应用[J]. 光谱学与光谱分析, 2009, 29(11): 2989-2993.

    Zhao Hongxia, Gan Fuxi. Application of Raman spectroscopic technique to the identification and investigation of Chinese ancient jades and jade artifacts[J]. Spectroscopy and Spectral Analysis, 2009, 29(11): 2989-2993.

[19] 冯昕韡, 朱仲良, 沈梦洁, 等. 基于多项式拟合的拉曼光谱基线漂移校正方法[J]. 计算机与应用化学, 2009, 26(6): 759-762.

    Feng Xinwei, Zhu Zhongliang, Shen Mengjie, et al. The method of baseline correction of Raman spectrum based on polynomial fitting[J]. Computers and Applied Chemistry, 2009, 26(6): 759-762.

[20] 章颖强, 董伟, 张冰, 等. 基于拉曼光谱和最小二乘支持向量机的橄榄油掺伪检测方法研究[J]. 光谱学与光谱分析, 2012, 32(6): 1554-1558.

    Zhang Yingqiang, Dong Wei, Zhang Bing, et al. Research on detection method of adulterated olive oil by Raman spectroscopy and least squares support vector machine[J]. Spectroscopy and Spectral analysis, 2012, 32(6): 1554-1558.

[21] 吴正洁, 王成, 林正春. 拉曼光谱对血红蛋白浓度的定量分析[J]. 暨南大学学报 (自然科学与医学版), 2013, 34(1): 87-90.

    Wu Zhengjie, Wang Cheng, Lin Zhengchun. Quantitative analysis of hemoglobin concentration by Raman spectra[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2013, 34(1): 87-90.

[22] 杨丹, 徐文艺. 常见氯盐溶液水的拉曼包络线高斯洛仑兹去卷积分峰定量研究[J]. 光谱学与光谱分析, 2013, 33(2): 376-382.

    Yang Dan, Xu Wenyi. Gauss-Lorentz quantitative research on O-H stretching Raman spectra of water in common chlorine salt solution[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 376-382.

[23] Ren M, Arnold M A. Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra[J]. Anal Bioanal Chem, 2007, 387(3): 879-888.

[24] Caspers P J, Lucassen G W, Carter E A, et al. In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles[J]. J Investig Dermatol, 2001, 116(3): 434-442.

[25] Egawa M, Sato Y. In vivo evaluation of two forms of urea in the skin by Raman spectroscopy after application of urea-containing cream[J]. Skin Res Technol, 2014, 21(3): 259-264.

王琴, 赵畅, 杨荟楠, 苏明旭, 蔡小舒. 激光拉曼光谱法同步测量液膜厚度与浓度[J]. 激光与光电子学进展, 2016, 53(9): 093001. Wang Qin, Zhao Chang, Yang Huinan, Su Mingxu, Cai Xiaoshu. Simultaneous Measurement of Film Thickness and Mass Fraction by Raman Spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(9): 093001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!