激光与光电子学进展, 2017, 54 (8): 080002, 网络出版: 2017-08-02  

光纤布拉格光栅-长周期光纤光栅级联结构研究进展 下载: 894次

Research Progress of Fiber Bragg Grating-Long Period Fiber Grating Cascaded Structure
作者单位
山东省科学院海洋仪器仪表研究所, 山东 青岛 266061
摘要
光纤光栅是光纤传感和光纤通信领域的重要器件之一, 光纤光栅的级联因其特性新颖一直是研究的热点。着重介绍了光纤布拉格光栅-长周期光纤光栅(FBG-LPG)级联结构在包层模式再耦合、边缘滤波和独立级联3方面的研究进展, 讨论了各自的技术难点, 并提出了改进意见。针对透射型FBG-LPG光路复杂的问题, 提出一种反射型FBG-LPG独立级联结构, 简化了光路, 优化了系统性能, 并进行了实验验证。在此基础上展望了FBG-LPG级联结构的发展趋势。
Abstract
Optical fiber gratings have become one of the most important devices in the field of optical fiber sensing and optical fiber communication. Because of the novel characteristics, cascaded structures of the fiber gratings have always been the focus of research. The research progresses of cladding mode recoupling, edge filtering and independent cascading of the fiber Bragg grating-long period fiber grating (FBG-LPG) cascaded structure are summarized, and their technical difficulties are discussed. Suggestions for improvement are presented. To address the problem of the complexity of transmission type FBG-LPG optical path, a reflection type FBG-LPG independent cascaded structure which can effectively simplify the structure is proposed, and the system performance is optimized and verified by experiment. The development trend of the FBG-LPG cascaded structure is predicted.
参考文献

[1] Kersey A D, Davis M A, Patrick H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.

[2] Giles C R. Lightwave applications of fiber Bragg gratings[J]. Journal of Lightwave Technology, 1997, 15(8): 1391-1404.

[3] Erdogan T. Cladding-mode resonances in short- and long-period fiber grating filters[J]. Journal of the Optical Society of America A, 1997, 14(8): 1760-1773.

[4] Urrutia A, Goicoechea J, Ricchiuti A L, et al. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating[J]. Sensors and Actuators B: Chemical, 2016, 227: 135-141.

[5] Marignetti F, de Santis E, Avino S, et al. Fiber Bragg grating sensor for electric field measurement in the end windings of high-voltage electric machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2796-2802.

[6] Wada D, Lgawa H, Murayama H. Simultaneous distributed measurement of the strain and temperature for a four-point bending test using polarization-maintaining fiber Bragg grating interrogated by optical frequency domain reflectometry[J]. Measurement, 2016, 94: 745-752.

[7] Vidakovic M, McCague C, Armakolas I, et al. Fibre Bragg grating-based cascaded acoustic sensors for potential marine structural condition monitoring[J]. Journal of Lightwave Technology, 2016, 34(19): 4473-4478.

[8] Esposito F, Ranjan R, Campopiano S, et al. Experimental study of the refractive index sensitivity in arc-induced long period gratings[J]. IEEE Photonics Journal, 2017, 9(1): 7100110.

[9] 张宇菁, 王 蒙, 王泽锋, 等. 倾斜光纤光栅研究进展[J]. 激光与光电子学进展, 2016, 53(7): 070005.

    Zhang Yujing, Wang Meng, Wang Zefeng, et al. Research progress of tilted fiber Bragg gratings[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070005.

[10] 孙诗惠, 余有龙, 李 慧, 等. 基于光纤光栅的应力波检测技术研究[J]. 中国激光, 2016, 43(5): 0505002.

    Sun Shihui, Yu Youlong, Li Hui, et al. Detection technique of stress waves based on fiber Bragg grating[J]. Chinese J Lasers, 2016, 43(5): 0505002.

[11] 罗彬彬, 邹文根, 赵明富, 等. 极大倾斜角度光纤光栅pH值传感器及其增敏研究[J]. 光学学报, 2017, 37(1): 0106009.

    Luo Binbin, Zou Wengen, Zhao Mingfu, et al. pH sensor based on fiber grating with extremely large tilt angle and its sensitivity enhancement[J]. Acta Optica Sinica, 2017, 37(1): 0106009.

[12] 张 磊, 于清旭. 光纤F-P腔与FBG复用传感器精确解调方法研究[J]. 光电子·激光, 2009, 20(8): 1008-1011.

    Zhang Lei, Yu Qingxu. An improved demodulation method for F-P and FBG multiplexing system[J]. Journal of Optoelectronics·Laser, 2009, 20(8): 1008-1011.

[13] Ding J F, Zhang A P, Shao L Y, et al. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor[J]. IEEE Photonics Technology Letters, 2005, 17(6): 1247-1249.

[14] Luo Z H, Wen H Q, Guo H Y, et al. A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Optics Express, 2013, 21(19): 22799-22807.

[15] Zhang A P, Tao X M, Chung W H, et al. Cladding-mode-assisted recouplings in concatenated long-period and fiber Bragg gratings[J]. Optics Letters, 2002, 27(14): 1214-1216.

[16] Fallon R W, Zhang L, Everall L A, et al. All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating[J]. Measurement Science and Technology, 1998, 9(12): 1969-1973.

[17] Alwis L, Sun T, Grattan K T V. Optical fibre refractive index sensor in a hybrid fibre grating configuration[J]. Procedia Engineering, 2015, 120: 11-14.

[18] Han M, Guo F W, Lu Y F. Optical fiber refractometer based on cladding-mode Bragg grating[J]. Optics Letters, 2010, 35(3): 399-401.

[19] Sun A, Wu Z S. Hybrid long-period-grating and fiber Bragg grating for cladding-mode-recoupling-based discrimination of temperature and strain[J]. Optical Engineering, 2012, 51(4): 044402.

[20] Fu M Y. Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber Bragg grating and a long period grating[J]. IEEE Sensors Journal, 2012, 12(5): 1415-1420.

[21] 曹 莹, 顾铮天. 级联长周期光纤光栅和Bragg光纤光栅的光学特性[J]. 中国激光, 2012, 39(4): 0405003.

    Cao Ying, Gu Zhengtian. Optical properties of cascaded long-period and fiber Bragg gratings[J]. Chinese J Lasers, 2012, 39(4): 0405003.

[22] Chen Y, Liu B L, Liu H L, et al. Multi-parameter simultaneously sensing based on an optimized concatenated FBG with LPG[J]. Journal of Optical Communications, 2015, 36(2): 115-122.

[23] Patrick H J, Williams G M, Kersey A D, et al. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination[J]. IEEE Photonics Technology Letters, 1996, 8(9): 1223-1225.

[24] Zhang L, Fallon R, Everall L A, et al. Large-dynamic-range and high-resolution from a strain sensing system using long-period grating interrogating FBG strain sensor[C]. 24th European Conference on Optical Communication, 1998: 6313288.

[25] 黄勇林, 代 森. 基于长周期光栅边缘滤波解调的光纤布喇格光栅位移传感研究[J]. 传感技术学报, 2009, 22(9): 1266-1269.

    Huang Yonglin, Dai Sen. Edge filter demodulation of fiber Bragg grating displacement sensing using long period grating[J]. Chinese Journal of Sensors and Actuators, 2009, 22(9): 1266-1269.

[26] 周 锐, 乔学光, 王若晖, 等. 基于长周期光纤光栅线性边缘滤波的地震波解调系统[J]. 光电子·激光, 2011, 22(7): 987-991.

    Zhou Rui, Qiao Xueguang, Wang Ruohui, et al. Seismic wave interrogation system based on the linear edge filter characteristics of long period fiber grating[J]. Journal of Optoelectronics·Laser, 2011, 22(7): 987-991.

[27] Enríquez D A C, da Cruz A R, Rocco Giraldi M T M, et al. Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination[J]. Optics & Laser Technology, 2012, 44(4): 981-986.

[28] 朱 珠, 梁大开, 孙红兵. 基于双长周期光纤光栅边缘滤波的光纤布拉格光栅解调系统[J]. 中国激光, 2013, 40(3): 0305001.

    Zhu Zhu, Liang Dakai, Sun Hongbing. Double-edged filter wavelength demodulation system for fiber Bragg gratings based on long period fiber grating[J]. Chinese J Lasers, 2013, 40(3): 0305001.

[29] 巩 鑫, 华灯鑫, 李仕春, 等. 时分复用光纤光栅系统的边缘滤波解调与标定[J]. 中国激光, 2016, 43(10): 1010006.

    Gong Xin, Hua Dengxin, Li Shichun, et al. Edge filtering demodulation and calibration of fiber grating system based on time-division multiplexing[J]. Chinese J Lasers, 2016, 43(10): 1010006.

[30] 罗 霄, 黄勇林. CLPG的分布式FBG解调系统仿真研究[J]. 传感器与微系统, 2017, 36(1): 45-47.

    Luo Xiao, Huang Yonglin. Simulation research on distributed FBG demodulation system based on CLPG[J]. Transducer and Microsystem Technologies, 2017, 36(1): 45-47.

[31] 张自嘉. 光纤光栅理论基础与传感技术[M]. 北京: 科学出版社, 2009: 146-148.

    Zhang Zijia. Theoretical basis and sensing technology of fiber Bragg grating[M]. Beijing: Science Press, 2009: 146-148.

赵强, 闫星魁, 张可可, 陈世哲, 张继明, 刘世萱. 光纤布拉格光栅-长周期光纤光栅级联结构研究进展[J]. 激光与光电子学进展, 2017, 54(8): 080002. Zhao Qiang, Yan Xingkui, Zhang Keke, Chen Shizhe, Zhang Jiming, Liu Shixuan. Research Progress of Fiber Bragg Grating-Long Period Fiber Grating Cascaded Structure[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!