光学学报, 2016, 36 (11): 1102001, 网络出版: 2016-11-08   

混合原子光机械系统中的量子相干控制

Quantum Coherent Control in Hybrid Atom Optomechanical Systems
作者单位
江南大学理学院, 江苏 无锡 214122
摘要
研究了原子相干及量子相干对混合原子光机械系统输出特性的影响。应用微扰方法及光腔的输入输出理论求解Langevin方程,得到了混合原子光机械系统对弱探测场的响应函数。分析了腔模与原子系统的耦合强度、量子干涉效应对混合原子光机械系统输出特性的影响。研究发现,控制原子系统的量子干涉效应,即可控制混合原子光机械系统的输出特性;改变原子系统的控制场强度,便可改变混合原子光机械系统的透明窗口宽度,从而得到由原子吸收谱调制的光机械系统的吸收谱;在光机械系统透明窗口中心区域可实现探测场的放大;改变原子系统中控制场或耦合场的失谐量,可以控制混合原子光机械系统的透明窗口位置。
Abstract
The influence of atomic coherence and quantum coherence on the hybrid atom optomechanical system is studied. The Langevin equation is solved by the perturbation method and the optical cavity input-output theory, and the response function of the hybrid atom optomechanical system to weak probe field is obtained. The influence factors, including the coupling strength between the cavity mode and the atom system and the quantum interference effect on the output properties of the hybrid atom optomechanical system, are analyzed. It is found that the output properties of the hybrid atom optomechanical system can be controlled by controlling quantum interference effect. By changing the intensity of the controlling field, the width of the transparent window of the hybrid atom optomechanical system can be changed, and the absorption spectra of the optomechanical system modulated by the atom absorption spectrum is obtained. The probe field can be amplified in the center region of the transparent window of the hybrid atom optomechanical system. When the detuning of the controlling field or the coupling field is changed, the location of the transparent window of the hybrid atom optomechanical system can be controlled.
参考文献

[1] Scully M O, Zubairy M S. Quantum optics[M]. Cambridge: Cambridge University Press, 1997: 225-230.

[2] Fleishhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media[J]. Rev Mod Phys, 2005, 77(2): 633-673.

[3] Niu Y P, Gong S Q, Li R X, et al. Giant Kerr nonlinearity induced by interacting dark resonances[J]. Opt Lett, 2005, 30(24): 3371-3373.

[4] Harris S E. Refractive-index control with strong fields[J]. Opt Lett, 1994, 19(23): 2018-2020.

[5] Harris S E, Hau L V. Nonlinear optics at low light levels[J]. Phys Rev Lett, 1999, 82(23): 4611-4614.

[6] Camacho R M, Vudyasetu P K, Howell J C. Four-wave-mixing stopped light in hot atomic rubidium vapour[J]. Nature Photonics, 2009, 3(2): 103-106.

[7] Guo Y J, Nie W J. Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity[J]. Chinese Physics B, 2015, 24(9): 094205.

[8] Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490-493.

[9] Nikoghosyan G, Fleischhauer M. Stationary light in cold-atomic gases[J]. Phys Rev A, 2009, 80(1): 013818.

[10] Zhang Y P, Khadka U, Anderson B, et al. Controlling four-wave and six-wave mixing processes in multilevel atomic systems[J]. Appl Phys Lett, 2007, 91(22): 221108.

[11] Zhang Y P, Brown A W, Xiao M. Matched ultraslow propagation of highly efficient four-wave mixing in a closely cycled double-ladder system[J]. Phys Rev A, 2006, 74(5): 053813.

[12] Chen H X, Zhang Y Q, Yao X, et al. Parametrically amplified bright-state polariton of four- and six-wave mixing in an optical ring cavity[J]. Sci Rep, 2014, 4: 3619.

[13] Yao X, Chen H X, Wu Z K, et al. Vacuum induced enhancement and suppression of six-wave mixing in a ring cavity[J]. Laser Phys Lett, 2014, 11(4): 045401.

[14] Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Phys Rev Lett, 2007, 99(9): 093902.

[15] Dobrindt J M, Wilson-Rae I, Kippenberg T J. Parametric normal-mode splitting in cavity optomechanics[J]. Phys Rev Lett, 2008, 101(26): 263602.

[16] Grblacher S, Hammerer K, Vanner M R, et al. Observaion of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 2009, 460(7256): 724-727.

[17] Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Phys Rev A, 2010, 81(4): 041803.

[18] Agarwal G S, Huang S M. Optomechanical systems as single-photon routers[J]. Phys Rev A, 2012, 85(2): 021801.

[19] Safavi-Naeini A H, Myer Alegre T P, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69-73.

[20] Shahidani S, Naderi M H, Soltanolkotabi M, et al. Quantum dynamics of an optomechanical system in the presence of Kerr-down conversion nonlinearity[J]. 2013: arXiv.

[21] Bariani F, Singh S, Buchmann L F, et al. Hybrid optomechanical cooling by atomic Λ systems[J]. Phys Rev A, 2014, 90(3): 033838.

[22] Yi Z, Li G X, Wu S P, et al. Groud-state cooling of an oscillator in a hybrid atom-optomechanical system[J]. Opt Express, 2014, 22(17): 20060-20075.

[23] 戈燕, 花轩, 张蕾, 等. 倒Y型四能级原子系统中电磁诱导透明的相干控制[J]. 光子学报, 2015, 44(6): 0627004.

    Ge Yan, Hua Xuan, Zhang Lei, et al. Coherent control of the electromagnetically induced transparency in inversed Y-type-four-level system[J]. Acta Photonica Sincia, 2015, 44(6): 0627004.

[24] Walls D F, Milburn G J. Quantum optics[M]. 2nd ed. Brisbane: Springer-Verlag Berlin Heidelberg, 1994: 127-131, 302-305.

王琦, 戈燕, 刘练珍, 张向阳. 混合原子光机械系统中的量子相干控制[J]. 光学学报, 2016, 36(11): 1102001. Wang Qi, Ge Yan, Liu Lianzhen, Zhang Xiangyang. Quantum Coherent Control in Hybrid Atom Optomechanical Systems[J]. Acta Optica Sinica, 2016, 36(11): 1102001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!