强激光与粒子束, 2018, 30 (11): 113001, 网络出版: 2019-01-18   

宽气压范围空气中微波击穿电场的计算公式

Formula of microwave breakdown electric field calculation within wide pressure range in air
作者单位
西安交通大学 电子物理与器件教育部重点实验室, 西安 710049
摘要
为了简便快捷地计算微波击穿电场, 依据电子扩散模型的基本理论, 结合气体放电的基本参量, 应用特征扩散长度的概念, 给出了适合于规则结构微波部件的击穿电场的计算方法。为避免各种气体参数的不确定性对计算准确度的影响, 对等效直流电场与特征扩散长度之间的实验关系进行了拟合, 并根据等效直流电场的定义, 得出了一个适用于较高气压范围的击穿电场计算表达式。为了将该计算表达式扩展到更低的气压范围, 综合考虑了电子扩散模型和基于二次电子发射现象的真空微放电机理, 引入了一个合理形式的等效扩散长度, 进一步给出了适合于更广气压范围的微波击穿电场的计算表达式, 计算结果更符合A.D.Macdonald的实验结果。
Abstract
For calculating microwave breakdown electric field in air simply and instantly, we give a new formula adopting characteristic diffusion length, which is combined with basic parameters in gas discharge and based on electron diffusion model. We fit the relationship between equivalent direct-current electric field and characteristic diffusion length from experiment recorded by A D Macdonald (1966), thus to avoid the influence of uncertainty of gas parameters on calculation accuracy. According to the definition of equivalent direct-current electric field, we give another formula to calculate breakdown electric field, which applies to a high air pressure. Also, in consideration of electric diffusion model and vacuum multipactor discharge based on secondary electron emission, we further give a formula applicable to a wide air pressure range by using a rational equivalent diffusion length. Compared with the formula by Yu Ming (2007), our results are more consistent with Macdonald’s experimental value.
参考文献

[1] Yu Ming. Power-handling capability for RF filters[J]. IEEE Microwave Magazine, 2007, 8(5): 88-97.

[2] 杨耿, 谭吉春, 盛定仪, 等. 波导等离子体限幅器中气体的选择与触发条件计算[J]. 强激光与粒子束, 2008, 20(3): 439-442.(Yang Geng, Tan Jichun, Sheng Dingyi, et al. Gas selection and calculation of its breakdown field for plasma waveguide limiter. High Power Laser and Particle Beams, 2008, 20(3): 439-442)

[3] 刘静月, 黄文华, 方进勇, 等. 高功率微波大气击穿的光学诊断[J]. 强激光与粒子束, 2000, 12(3): 327-330.(Liu Jingyue, Huang Wenhua, Fang Jinyong, et al. Optical diagnosis of high power microwave air breakdown. High Power Laser and Particle Beams, 2000, 12(3): 327-330)

[4] 陈雅深, 董志伟, 赵强, 等. 高功率微波大气传输电离过程的物理研究[J]. 强激光与粒子束, 2006, 18(1): 119-123.(Chen Yashen, Dong Zhiwei, Zhao Qiang, et al. Physical research on ionization of high power microwave propagating in atmosphere. High Power Laser and Particle Beams, 2006, 18(1): 119-123)

[5] 杨建宏, 牛忠霞, 周东方, 等. 大气击穿对高功率微波天线的影响[J]. 强激光与粒子束, 2005, 17(8): 1223-1227.(Yang Jianhong, Niu Zhongxia, Zhou Dongfang, et al. Effect of air breakdown on high power microwave antenna. High Power Laser and Particle Beams, 2005, 17(8): 1223-1227)

[6] Pinheiro-Ortega T, Monge J, Marini S, et al. Microwave corona breakdown prediction in arbitrarily-shaped waveguide based filters[J]. IEEE Microwave & Wireless Components Letters, 2010, 20(4): 214-216.

[7] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996. (Xu Xueji, Zhu Dingchang. Physics of gas discharge. Shanghai: Fudan University Press, 1996)

[8] Herlin M A, Brown S C. Electrical breakdown of a gas between coaxial cylinders at microwave frequencies[J]. Phys Rev, 1948, 74(8): 910-913.

[9] Herlin M A, Brown S C. Breakdown of a gas at microwave frequencies[J]. Phys Rev, 1948, 74(3): 291-296.

[10] Macdonald A D. Microwave breakdown in gases[M]. New York: John Wiley & Sons, Inc., 1966.

[11] Anderson D, Jordon U, Lisak M, et al. Microwave breakdown in resonators and filters[J]. IEEE Trans Microwave Theory & Techniques, 1999, 47(12): 2547-2556.

[12] Tomala R, Jordan U, Anderson D, et al. Microwave breakdown of the TE11 mode in a circular waveguide[J]. Journal of Physics D Applied Physics, 2005, 38(14): 2378-2381.

[13] Rasch J, Anderson D, Lisak M, et al. Microwave corona breakdown in a gas-filled rectangular resonator cavity[J]. Journal of Physics D Applied Physics, 2009, 42: 055210.

[14] Chung T H, Lin M, Hyun J Y, et al. Two-dimensional fluid simulation of capacitively coupled RF electronegative plasmas[J]. Japanese Journal of Applied Physics, 1997, 36(5A): 2874-2882.

[15] 翁明, 王瑞, 崔万照. 空气中微波击穿电场的计算[J]. 真空科学与技术学报, 2013, 33(6): 598-604. (Weng Ming, Wang Rui, Cui Wanzhao. Simulation of microwave breakdown electric field in air. Chinese Journal of Vacuum Science and Technology, 2013, 33(6): 598-604)

[16] 翁明, 王瑞, 崔万照. 高频气体击穿与真空击穿之间的联系[J]. 空间电子技术, 2014(1): 6-10. (Weng Ming, Wang Rui, Cui Wanzhao. The relation between the high-frequency gas breakdown and the vacuum breakdown. Space Electric Technology, 2014(1): 6-10)

[17] 翁明, 王瑞, 崔万照. 采用等效特征扩散长度计算微波击穿电场[J]. 西安交通大学学报, 2013, 47(4): 1-5.(Weng Ming, Wang Rui, Cui Wanzhao. Calculation of microwave breakdown electric field use the equivalent characteristic diffusion length. Journal of Xi’an Jiaotong University, 2013, 47(4): 1-5)

[18] Jordan U, Anderson D, Lapierre L, et al. On the effective diffusion length for microwave breakdown[J]. IEEE Trans Plasma Science, 2006, 34(2): 421-430.

[19] Herlin M A, Brown S C. Breakdown of a gas at microwave frequencies[J]. Phys Rev, 1948, 74(3): 291-296.

[20] Macdonald A D, Gaskell D U, Gitterman H N. Microwave breakdown in air, oxygen, and nitrogen[J]. Phys Rev, 1963, 130(5): 1841-1850.

[21] Sorolla E, Mattes M. Corona discharge in microwave devices: A comparison of ionization rate models[J]. IEEE Microwave Review, 2010, 16(1): 41-46.

刘婉, 翁明, 殷明, 徐伟军, 王芳, 曹猛. 宽气压范围空气中微波击穿电场的计算公式[J]. 强激光与粒子束, 2018, 30(11): 113001. Liu Wan, Weng Ming, Yin Ming, Xu Weijun, Wang Fang, Cao Meng. Formula of microwave breakdown electric field calculation within wide pressure range in air[J]. High Power Laser and Particle Beams, 2018, 30(11): 113001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!