激光与光电子学进展, 2018, 55 (10): 102802, 网络出版: 2018-10-14   

基于激光雷达强度值的目标反射特征提取 下载: 1768次

Target Reflection Feature Extraction Based on Lidar Intensity Value
作者单位
华中科技大学光学与电子信息学院, 湖北 武汉 430074
摘要
激光雷达强度值能在一定程度上反映目标反射特性, 但由于受到距离、入射角、大气衰减效应等因素的影响, 并不能直接作为目标分类的重要特征。针对常用车载扫描激光雷达, 在对激光雷达强度值进行理论分析的基础上, 通过实验的方式固定了其他因素对强度值的影响, 建立了激光雷达强度值和表征目标反射特征参数间的关系模型。经过实验研究发现, 半椭圆模型形式的角度因子能更好地描述目标漫反射强度值随入射角的变化规律, 激光雷达强度值与接收功率间为线性转换规律; 在盲区范围外, 目标漫反射强度值随距离的变化遵循负指数规律。在实际应用中, 可以结合雷达运动来获得同一目标在不同相对位置处的强度值, 并将其代入模型中反演与目标反射特性相关的参数, 以实现对不同目标的区分。
Abstract
The lidar intensity value can reflect the target reflection characteristics to a certain degree, but it cannot be directly used as an important feature of target classification because of the influence of various factors, such as distance, incident angle, and atmospheric attenuation effect. For the lidar commonly used in vehicle, based on theoretical analysis of the lindar intensity value, the influence of other factors on the intensity values is fixed by the experimental method, and the relationship between the lidar intensity value and the parameters of the target reflection characteristics is established. The experimental results show that the angle factor of semi-elliptical model can better describe the variation of the target diffuse intensity value with the incident angle. And the lidar intensity value linearly transforms with the received power. Outside the blind area, the variation of target diffuse reflection value with distance follows the negative index law. In practical applications, we combine lidar motion to obtain intensity values of the same target at different relative positions. We can use the obtained intensity values to substitute into the model, invert the parameters related to the target reflection characteristics, and realize the differentiation of different targets.
参考文献

[1] 刘斌, 张军, 鲁敏, 等. 激光雷达应用技术研究进展[J]. 激光与红外, 2015, 45(2): 117-122.

    Liu B, Zhang J, Lu M, et al. Research progress of laser radar applications[J]. Laser & Infrared, 2015, 45(2): 117-122.

[2] Azim A, Aycard O. Detection, classification and tracking of moving objects in a 3D environment[C]. IEEE Intelligent Vehicles Symposium, June 3-7, 2012, Alcala de Henares, Spain. New York: IEEE, 2012: 802-807.

[3] Korchev D, Cheng S, Owechko Y, et al. On real-time lidar data segmentation and classification[C]∥International Conference on Image Processing, Computer Vision, and Pattern Recognition, 2013.

[4] Kidono K, Miyasaka T, Watanabe A, et al. Pedestrian recognition using high-definition LIDAR[J]. Journal of the Robotics Society of Japan, 2011, 29(10): 405-410.

[5] 谭凯, 程效军. 基于强度数据的地面激光点云自适应非监督分类[J]. 激光与光电子学进展, 2016, 53(3): 032801.

    Tan K, Cheng X J. Adaptive unsupervised classification of TLS point cloud based on intensity data[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032801.

[6] 蔡越, 徐文兵, 梁丹, 等. 基于激光回波强度判别毛竹年龄[J]. 中国激光, 2018, 45(1): 0110003.

    Cai Y, Xu W B, Liang D, et al. Distinguishing phyllostachys edulis age based on laser scanning intensity[J]. Chinese Journal of Lasers, 2018, 45(1): 0110003.

[7] Kaasalainen S, Jaakkola A, Kaasalainen M, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods[J]. Remote Sensing, 2011, 3(10): 2207-2221.

[8] Hfle B, Pfeifer N. Correction of laser scanning intensity data: data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433.

[9] 程小龙, 程效军, 李泉, 等. 基于分段多项式模型的地面三维激光扫描激光强度改正[J]. 激光与光电子学进展, 2017, 54(11): 112802.

    Cheng X L, Cheng X J, Li Q, et al. Laser intensity correction of terrestrial 3D laser scanning based on sectional polynomial model[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112802.

[10] 李泉, 程效军, 田芮, 等. 多站地面三维激光扫描强度数据纠正与归一化[J]. 激光与光电子学进展, 2017, 54(12): 122802.

    Li Q, Cheng X J, Tian R, et al. Correction and normalization of multi-scan terrestrial three-dimensional laser scanning intensity[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122802.

[11] Pfeifer N, Hfle B, Briese C, et al. Analysis of the backscattered energy in terrestrial laser scanning data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 1045-1052.

[12] 戴永江. 激光雷达原理[M]. 北京: 国防工业出版社, 2002.

    Dai Y J. Principle oflaser radar[M]. Beijing: National Defence Industry Press, 2002.

[13] Li X L, Liang Y, Xu L J. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging[J]. Journal of the Optical Society of America A, 2014, 31(9): 2055-2063.

[14] Pfeifer N, Dorninger P, Haring A, et al. Investigating terrestrial laser scanning laser scanning intensity data: quality and functional relations[C]∥8th Conference on Optical 3D Measurement Techniques, 2006: 328-337.

[15] Phong B T. Illumination for computer generated pictures[J]. Communications of the ACM, 1975, 18(6): 311-317.

[16] Li X L, Ma L, Xu L J. Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection[J]. Optical Engineering, 2013, 52(11): 116110.

童祎, 夏珉, 杨克成, 李微, 郭文平. 基于激光雷达强度值的目标反射特征提取[J]. 激光与光电子学进展, 2018, 55(10): 102802. Tong Yi, Xia Min, Yang Kecheng, Li Wei, Guo Wenping. Target Reflection Feature Extraction Based on Lidar Intensity Value[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102802.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!