强激光与粒子束, 2010, 22 (2): 425, 网络出版: 2010-05-28  

加速器电水锤数值模拟与实验研究

Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators
作者单位
国防科学技术大学 光电科学与工程学院,长沙 410073
摘要
强流加速器水介质形成线放电或击穿形成的冲击波对陶瓷真空界面具有破坏作用。为获得该冲击载荷的信息,应用通用软件ANSYS/LS-DYNA建立了一种水下爆炸有限元模型,将电弧放电等效为爆炸源,模拟得到了冲击波传播时序、压力历史曲线及陶瓷板的加速度响应;为验证模型的有效性,应用“针-板”电极水开关在输出电脉冲40~50 ns、幅值100~300 kV可调的10级陡化前沿Marx发生器上开展了电水锤缩比实验研究。实测了不同击穿电压下冲击波峰压、波速和主脉冲宽度,并依据经验公式计算了放电沉积能量和冲击波能量,平均约17%的间隙放电能量转换为冲击波机械能。对冲击波能量与峰压关系进行了拟合,并与数值模拟结果进行了比较,二者变化趋势基本一致,量级上吻合较好。
Abstract
Pulsed discharge in water produces transient shockwaves which are harmful to the ceramic interface in accelerators. In this paper,with a self-consistent underwater explosive approach,a finite element model was set up to investigate the shockwave behaviors,and the pressure-time history and ceramic mechanical response to shockwaves were presented. In order to get the pressure profile and verify the calculation models,a small-scaled water switch test was conducted based on a 10-stage Marx generator (40~50 ns pulse duration,100~300 kV amplitude). The variations of peak pressure,shock velocity and main pulse width under different breakdown conditions were measured. According to the calculation of empirical formulas,about 17% of the discharge energy was transformed into the mechanical energy of the shockwave. The relationship between peak pressure and shock energy was also figured out and the experimental formula has a close approximation to the simulation result.
参考文献

[1] Barker R J,Schamiloglu E. High power microwave source and technologies[M]. Wiley: IEEE Press,2001.

[2] 荀涛,杨汉武,张建德,等.一种陶瓷径向绝缘强流二极管耐压结构设计[J].强激光与粒子束,2007,19(6):1019-1022.(Xun Tao,Yang Hanwu,Zhang Jiande,et al. Design of a ceramic radial insulation structure for a high current diode. High Power Laser and Particle Beams,2007,19(6):1019-1022)

[3] Nation J A. Vacuum equipment for ultra high power microwave experiments[R]. New York: Cornell University,1999.

[4] Grady D E. Dynamic properties of ceramic materials[R]. SAND94-3266,1995.

[5] Xiao S,Kolb J,Kono S,et al. High power water switches: Postbreakdown phenomena and dielectric recovery[J]. IEEE Trans on Dielectrics and Electrical Insulation,2004,11(4):604-610.

[6] Sunka P. Pulse electrical discharge in water and their applications[J]. Phys Plasmas,2001,8:2587-2594.

[7] Van Denvender J P. The resistive phase of a high-voltage water spark[J]. J Appl Phys,1978,49(5):2616-2620.

[8] Grinenko A,Efimov S,Fedotov A,et al. Efficiency of the shock wave generation caused by underwater electrical wire explosion[J]. J Appl Phys,2006,100(11):3509-3517.

[9] Gary R H. Plasma driven water shock[R]. DNA 001-91-C-0138,1996.

[10] 沈志康,董寿莘.REB加速器水线电水锤作用力分析[C]//全国高功率粒子束十年文集. 绵阳: 1995:268-273.(Shen Zhikang,Dong Shouxin. Analysis of hydrodynamic loading due to pulsed discharge in a water pulse forming line of a REB accelerator//Proceeding of the decade selected works of high pulsed power in China. 1995:268-273)

[11] Kedrinskii V K. Kirkwood-Bethe approximation for an underwater explosion with cylindrical symmetry[J]. Combustion,Explosion,and Shock Waves,1972,8(1):94-100.

[12] Cole R H. Underwater explosions[M]. Princeton: Princeton University Press,1948.

[13] Cronin D S,Bui K,Kaufmann C,et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA[C]//Proc 4th European LS-DYNA Users Conf. 2004:49-54.

[14] 高景明,刘永贵,刘金亮,等.陡化前沿Marx发生器的设计与初步实验[J].强激光与粒子束,2008,20(1):167-169.(Gao Jingming,Liu Yonggui,Liu Jinliang,et al. Design and preliminary experimental results of wave erection Marx generator. High Power Laser and Particle Beams,2008,20(1):167-169)

[15] Vitkovitsky I. High power switches[M]. New York: Van Nostrand Reinhold Company,1987:122-124.

[16] Martin T H. J C Martin on pulsed power[M]. New York: Plenum Press,1996

荀涛, 杨汉武, 张建德, 高景明. 加速器电水锤数值模拟与实验研究[J]. 强激光与粒子束, 2010, 22(2): 425. Xun Tao, Yang Hanwu, Zhang Jiande, Gao Jingming. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators[J]. High Power Laser and Particle Beams, 2010, 22(2): 425.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!