激光与光电子学进展, 2015, 52 (2): 020604, 网络出版: 2015-01-19   

应力光纤双折射的应力微元分析方法 下载: 579次

Stress Element Analysis Method of the Birefringence in Stress-Induced Fiber
余盼 1,2,*季敏宁 1,2
作者单位
1 上海大学光纤研究所, 上海 201800
2 上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
摘要
提出了一种计算任意形状应力区的光纤在纤芯处的应力场分布和双折射大小的应力微元积分计算方法。采用COMSOL Multiphysics 软件中的固体力学模块,研究了矩形、方形、三角形、圆等不同形状微元应力区光纤在纤芯处应力场和双折射的大小。结果表明,应力微元面积相同时,其在纤芯处引起的应力大小及其双折射与应力微元的形状、放置方向无关,只与应力微元到纤芯的距离有关。当应力微元与纤芯距离较近时,应力大小和双折射与距离近似呈平方反比关系。该结果验证了应力微元分析方法的正确性和可行性。因此对应力微元进行积分,即可得到任意形状应力区光纤在纤芯处的应力场分布与双折射。
Abstract
A stress element analysis method is proposed for calculating the stress field and birefringence at the center of fiber core with any shape of fiber stress region. With the help of solid mechanics module in COMSOL Multiphysics software, stress field distribution and birefringence at the center of optical fiber core with the different shapes such as rectangle, square, triangle, circular stress element are studied. The results show that the stress field and birefringence at stress-induced optical fiber core are independent of the shape and direction of stress elements if the area of stress elements is the same and the stress element is small enough. They are only related with the distance between the fiber core and the center of the stress element. When the stress element is close to the core, this relationship between birefringence and distance approaches inverse square. The correctness and effectiveness of stress element analysis method can be verified from the results. So with integration of the stress element, stress distribution and birefringence at fiber core with any shape of stress region can be obtained.
参考文献

[1] 王振宝, 杨鹏翎, 邵碧波, 等. 应力和温度同时测量的光纤布拉格光栅双参数传感器[J]. 激光与光电子学进展, 2013, 50(10): 100602.

    Wang Zhenbao, Yang Pengling, Shao Bibo, et al.. Fiber Bragg grating for simultaneous measurement of strain and temperature[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100602.

[2] 吉正继, 武向农, 殷业, 等. 基于高双折射光子晶体光纤的Sagnac 环级联滤波器[J]. 激光与光电子学进展, 2014, 51(4): 040603.

    Ji Zhengji, Wu Xiangnong, Yin Ye, et al.. Sagnac loop cascaded filter based on highly birefringent photonic crystal fiber [J]. Laser & Optoelectronics Progress, 2014, 51(4): 040603.

[3] 孙婷婷, 王志, 赵立龙. 高折射率纤芯掺铒布拉格光纤放大器研究[J]. 激光与光电子学进展, 2010, 47(12): 120603.

    Sun Tingting, Wang Zhi, Zhao Lilong. Performance studies on Er3 + doped amplifier based on Bragg fiber with high index core[J]. Laser & Optoelectronics Progress, 2010, 47(12): 120603.

[4] 刘德明, 向清, 黄德修. 光纤光学[M]. 北京: 国防工业出版社, 1995. 258-259.

    Liu Deming, Xian Qing, Huang Dexiu. Optical Fiber Optics[M]. Beijing: National Defense Industry Press,1995. 258-259.

[5] P Chu, R Sammut. Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber[J]. J Lightwave Technol, 1984, 2(5): 650-662.

[6] D Lu, T Ge, J Wu, et al.. Theoretical analysis on thermal stress induced birefringence in rectangular and D-shaped double cladding fiber[C]. SPIE, 2008, 7278: 72780M.

[7] Y Meng, M Wu. Stress and modal birefringence of single-mode specialty optical fibers with three-stress regions[J]. Journal of Shanghai University (English Edition), 2011, 15(2): 137-142.

[8] Kun-Hsieh Tsai, Kyung-Suk Kim, T F Morse. General solutions for stress-induced polarization in optical fibers[J]. J Lightwave Technol, 1991, 9(1): 7-17.

[9] Y Liu, B M A Rahman, K T V Grattan. Analysis of the birefringence properties of optical fibers made by a preform deformation technique[J]. J Lightwave Technol, 1995, 13(2): 142-147.

[10] R Guan, F Zhu, Z Gan, et al.. Stress birefringence analysis of polarization maintaining optical fibers[J]. Optical Fiber Technology, 2005, 11(3): 240-254.

余盼, 季敏宁. 应力光纤双折射的应力微元分析方法[J]. 激光与光电子学进展, 2015, 52(2): 020604. Yu Pan, Ji Minning. Stress Element Analysis Method of the Birefringence in Stress-Induced Fiber[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020604.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!