激光与光电子学进展, 2014, 51 (3): 030003, 网络出版: 2014-03-03   

表面增强拉曼光谱技术在环境污染物检测中的应用 下载: 1725次

Application of Surface-Enhanced Raman Spectrum Technology in Detecting Environment Pollutants
作者单位
1 重庆师范大学物理与电子工程学院, 重庆 401331
2 成都绿色能源与绿色制造技术研发中心, 四川 成都 610207
引用该论文

杨盼, 丁帅军, 陈凡圣, 施金乐, 胡建明. 表面增强拉曼光谱技术在环境污染物检测中的应用[J]. 激光与光电子学进展, 2014, 51(3): 030003.

Yang Pan, Ding Shuaijun, Chen Fansheng, Shi Jinle, Hu Jianming. Application of Surface-Enhanced Raman Spectrum Technology in Detecting Environment Pollutants[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030003.

参考文献

[1] Raman C, Krishnan K. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[2] Fleischmann M, P Hendra, A McQuillan. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[3] Jeanmaire D L, R P Van Duyne. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.

[4] Albrecht M G, J A Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.

[5] Nie S, S R Emory. Probing single molecules and single nanoparticles by surface- enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[6] Zhang B, Li F, Houk R S, et al.. Pore exclusion chromatography- inductively coupled plasma- mass spectrometry for monitoring elements in bacteria: a study on microbial removal of uranium from aqueous solution[J]. Analytical Chemistry, 2003, 75(24): 6901-6905.

[7] Rajagopalan V, S Boussaad, N J Tao. Detection of heavy metal ions based on quantum point contacts[J]. Nano Letters, 2003, 3(6): 851-855.

[8] Kim Y, R C Johnson, J T Hupp. Gold nanoparticle- based sensing of“spectroscopically silent”heavy metal ions[J]. Nano Letters, 2001, 1(4): 165-167.

[9] Herzog G, D W Arrigan. Determination of trace metals by underpotential deposition- stripping voltammetry at solid electrodes[J]. TrAC Trends in Analytical Chemistry, 2005, 24(3): 208-217.

[10] Herzog G, D W Arrigan. Application of disorganized monolayer films on gold electrodes to the prevention of surfactant inhibition of the voltammetric detection of trace metals via anodic stripping of underpotential deposits: detection of copper[J]. Analytical Chemistry, 2003, 75(2): 319-323.

[11] Santos M C, Wagner M, Wu B, et al.. Biomonitoring of metal contamination in a marine prosobranch snail ( Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA- ICP- MS) [J]. Talanta, 2009, 80(2): 428-433.

[12] Tonetti C, R Innocenti. Determination of heavy metals in textile materials by atomic absorption spectrometry: Verification of the test method[J]. Autex Research Journal, 2009, 9: 66-70.

[13] Zhou N, Li J, Chen H, et al.. A functional graphene oxide- ionic liquid composites- gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+[J]. Analyst, 2013, 138(4): 1091-1097.

[14] Alvarez- Puebla R, Liz- Marzan L. Environmental applications of plasmon assisted Raman scattering[J]. Energy & Environmental Science, 2010, 3(8): 1011-1017.

[15] Bhandari D, Wells S M, Retterer S T, et al.. Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy[J]. Analytical Chemistry, 2009, 81(19): 8061-8067.

[16] Chen Y, Wu L, Chen Y, et al.. Determination of mercury (II) by surface- enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles[J]. Microchimica Acta, 2012, 177(3-4): 341-348.

[17] Li J, Chen L, Lou T, et al.. Highly sensitive SERS detection of As3 + ions in aqueous media using glutathione functionalized silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2011, 3(10): 3936-3941.

[18] Xu C. SERS active gold nanostar dimer for mercury ion detection[J]. Chemical Communications, 2013.

[19] Temiz H T, Boyao I H, Grabchev I, et al.. Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116: 339-347.

[20] Eshkeiti A, Narakathu B B, Reddy A S G, et al.. A novel inkjet printed surface enhanced raman spectroscopy (SERS) substrate for the detection of toxic heavy metals[J]. Procedia Engineering, 2011, 25: 338-341.

[21] Wang H, Campiglia A D. Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography[J]. Analytical Chemistry, 2008, 80(21): 8202-8209.

[22] Li H, Wang L. Highly Selective detection of polycyclic aromatic hydrocarbons using multifunctional magneticluminescent molecularly imprinted polymers[J]. ACS Applied Materials & Interfaces, 2013.

[23] 龚继来, 吕璞, 曾光明. 表面增强拉曼光谱在环境分析中的研究进展[J]. 光学传感器, 2009, 29(3): 8-12.

    Gong Jilai, Lü Pu, Zeng Gangming. Recnet advancements in environmental analysis based on surface-enhanced Raman spectroscoy[J]. Chemical Sensors, 2009, 29(3): 8-12.

[24] 谢云飞, 王旭. 基于表面增强拉曼散射光谱技术在多环芳烃检测方面的应用[J]. 光谱学与光谱分析, 2011, 31(9): 2319-2323.

    Xie Yunfei, Wang Xu. The application of surface Raman spectroscopy, technology in detecting PAHs[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2319-2323.

[25] Leyton P, Sanchez- Cortes S, Garcia- Ramos J V, et al.. Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on calix [4] arene- functionalized Ag nanoparticles by surface- enhanced Raman scattering[J]. The Journal of Physical Chemistry B, 2004, 108(45): 17484-17490.

[26] Leyton P, Domingo C, Sanche- Cortes S, et al.. Surface enhanced vibrational (IR and Raman) spectroscopy in the design of chemosensors based on ester functionalized p- tert- butylcalix [4] arene hosts[J]. Langmuir, 2005, 21(25): 11814-11820.

[27] Leyton P, Sanche-Cortes S, Campo-Vallette M, et al.. Surface-enhanced micro-Raman detection and characterization of calix [4] arene-polycyclic aromatic hydrocarbon host-guest complexes[J]. Applied Spectroscopy, 2005, 59(8): 1009-1015.

[28] Guerrini L, Garcia- Rames J V, Domingo E, et al.. Sensing polycyclic aromatic hydrocarbons with dithiocarbamatefunctionalized Ag nanoparticles by surface-enhanced Raman scattering[J]. Analytical chemistry, 2009, 81(3): 953-960.

[29] Shi X, Kwon Y H, Ma J, et al.. Trace analysis of polycyclic aromatic hydrocarbons using calixarene layered gold colloid film as substrates for surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy. 2013, 44(1): 41-46.

[30] Kwon Y H, Sowoidnich K, Schmidt H, et al.. Application of calixarene to high active surface- enhanced Raman scattering (SERS) substrates suitable for in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater[J]. Journal of Raman Spectroscopy, 2012, 43(8): 1003-1009.

[31] Shi X, Ma J, Zheng R, et al.. An improved self- assembly gold colloid film as surface- enhanced Raman substrate for detection of trace- level polycyclic aromatic hydrocarbons in aqueous solution[J]. Journal of Raman Spectroscopy, 2012, 43(10): 1354-1359.

[32] Qu L L, Li Y T, Li D W, et al.. Humic acids- based one- step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons[J]. Analyst, 2013, 138(5): 1523-1528.

[33] Xie Y, Wang X, Han X, et al.. Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs[J]. Journal of Raman Spectroscopy, 2011, 42(5): 945-950.

[34] I López-Tocón, J C Otero, J F Arenas, et al.. Multicomponent direct detection of polycyclic aromatic hydrocarbons by srface- enhanced raman spectroscopy using silver nanoparticles functionalized with the viologen host lucigenin[J]. Analytical chemistry, 2011, 83(7): 2518-2525.

[35] H Zhang, M H Harpster, H J Park, et al.. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman- active gold nanoparticles[J]. Analytical Chemistry, 2010, 83(1): 254-260.

[36] H Zhang, M H Harpster, W C Wilson, et al.. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles[J]. Langmuir, 2012, 28(8): 4030-4037.

[37] M Kahraman, M M Yazici, F Sahin, et al.. Convective assembly of bacteria for surface- enhanced Raman scattering[J]. Langmuir, 2008, 24(3): 894-901.

[38] C Fan, Z Hu, L K Riley, et al.. Detecting food- and waterborne viruses by surface- enhanced raman spectroscopy[J]. Journal of Food Science, 2010, 75(5): M302-M307.

[39] Y Xie, L Xu, Y Wang, et al.. Label- free detection of the foodborne pathogens of Enterobacteriaceae by surfaceenhanced Raman spectroscopy[J]. Analytical Methods, 2013, 5(4): 946-952.

[40] S J Park, T A Taton, C A Mirkin. Array- based electrical detection of DNA with nanoparticle probes[J]. Science, 2002, 295(5559): 1503-1506.

[41] H W Cheng, S Y Huan, H L Wu, et al.. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates[J]. Analytical Chemistry, 2009, 81(24): 9902-9912.

[42] H W Cheng, Y Y Chen, X X Lin, et al.. Surface- enhanced Raman spectroscopic detection of Bacillus subtilis spores using gold nanoparticle based substrates[J]. Analytica Chimica Acta, 2011, 707(1): 155-163.

[43] D P Cowcher, Y Xu, R Goodacre. Portable, Quantitative detection of bacillus bacterial spores using surface-enhanced raman scattering[J]. Analytical Chemistry, 2013, 85(6): 3297-3302.

[44] A D Strickland, C A Batt. Detection of carbendazim by surface- enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods[J]. Analytical Chemistry, 2009, 81(8): 2895-2903.

[45] X Wang, X T Wang, W S Shi, et al.. High- performance surface- enhanced Raman scattering sensors based on Ag nanoparticles- coated Si nanowire arrays for quantitative detection of pesticides[J]. Applied Physics Letters, 2010, 96(5): 053104.

[46] B Liu, P Zhou, X Liu, et al.. Detection of pesticides in fruits by surface- enhanced raman spectroscopy coupled with gold nanostructures[J]. Food and Bioprocess Technology, 2013, 6(3): 710-718.

[47] B Saute, R Premasiri, L Ziegler, et al.. Gold nanorods as surface enhanced raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides[J]. Analyst, 2012, 137(21): 5082-5087.

[48] X Zhou, F Zhou, H Liu, et al.. Assembly of polymer-gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection[J]. Analyst, 2013, 138(19): 5832-5838.

杨盼, 丁帅军, 陈凡圣, 施金乐, 胡建明. 表面增强拉曼光谱技术在环境污染物检测中的应用[J]. 激光与光电子学进展, 2014, 51(3): 030003. Yang Pan, Ding Shuaijun, Chen Fansheng, Shi Jinle, Hu Jianming. Application of Surface-Enhanced Raman Spectrum Technology in Detecting Environment Pollutants[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!