激光与光电子学进展, 2014, 51 (3): 030003, 网络出版: 2014-03-03   

表面增强拉曼光谱技术在环境污染物检测中的应用 下载: 1724次

Application of Surface-Enhanced Raman Spectrum Technology in Detecting Environment Pollutants
作者单位
1 重庆师范大学物理与电子工程学院, 重庆 401331
2 成都绿色能源与绿色制造技术研发中心, 四川 成都 610207
摘要
表面增强拉曼散射(SERS)光谱具有高灵敏性及高选择性,它已被用于科学研究及生产实践的多个领域。本文阐述了近几年来SERS 技术在检测重金属离子、多环芳烃、微生物、农药等环境污染物中的发展状况,并分析了该技术在这些应用领域的优点与不足。最后,预测了SERS 的发展趋势。
Abstract
Surface- enhanced Raman Scattering (SERS), with high sensitivity and selectivity , has been used in many areas of scientific research and production practice. The developme- nt of SERS technology in detecting environmental pollutants of heavy metal ions, polycyclic aromatic hydrocarbons, pathogenic microorganisms and pesticide in recent years is presented in this paper .And the advantages and disadvantages of SERS in these applications was analyzed. The development tendency of SERS was predicted in the end.
参考文献

[1] Raman C, Krishnan K. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[2] Fleischmann M, P Hendra, A McQuillan. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[3] Jeanmaire D L, R P Van Duyne. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.

[4] Albrecht M G, J A Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.

[5] Nie S, S R Emory. Probing single molecules and single nanoparticles by surface- enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[6] Zhang B, Li F, Houk R S, et al.. Pore exclusion chromatography- inductively coupled plasma- mass spectrometry for monitoring elements in bacteria: a study on microbial removal of uranium from aqueous solution[J]. Analytical Chemistry, 2003, 75(24): 6901-6905.

[7] Rajagopalan V, S Boussaad, N J Tao. Detection of heavy metal ions based on quantum point contacts[J]. Nano Letters, 2003, 3(6): 851-855.

[8] Kim Y, R C Johnson, J T Hupp. Gold nanoparticle- based sensing of“spectroscopically silent”heavy metal ions[J]. Nano Letters, 2001, 1(4): 165-167.

[9] Herzog G, D W Arrigan. Determination of trace metals by underpotential deposition- stripping voltammetry at solid electrodes[J]. TrAC Trends in Analytical Chemistry, 2005, 24(3): 208-217.

[10] Herzog G, D W Arrigan. Application of disorganized monolayer films on gold electrodes to the prevention of surfactant inhibition of the voltammetric detection of trace metals via anodic stripping of underpotential deposits: detection of copper[J]. Analytical Chemistry, 2003, 75(2): 319-323.

[11] Santos M C, Wagner M, Wu B, et al.. Biomonitoring of metal contamination in a marine prosobranch snail ( Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA- ICP- MS) [J]. Talanta, 2009, 80(2): 428-433.

[12] Tonetti C, R Innocenti. Determination of heavy metals in textile materials by atomic absorption spectrometry: Verification of the test method[J]. Autex Research Journal, 2009, 9: 66-70.

[13] Zhou N, Li J, Chen H, et al.. A functional graphene oxide- ionic liquid composites- gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+[J]. Analyst, 2013, 138(4): 1091-1097.

[14] Alvarez- Puebla R, Liz- Marzan L. Environmental applications of plasmon assisted Raman scattering[J]. Energy & Environmental Science, 2010, 3(8): 1011-1017.

[15] Bhandari D, Wells S M, Retterer S T, et al.. Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy[J]. Analytical Chemistry, 2009, 81(19): 8061-8067.

[16] Chen Y, Wu L, Chen Y, et al.. Determination of mercury (II) by surface- enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles[J]. Microchimica Acta, 2012, 177(3-4): 341-348.

[17] Li J, Chen L, Lou T, et al.. Highly sensitive SERS detection of As3 + ions in aqueous media using glutathione functionalized silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2011, 3(10): 3936-3941.

[18] Xu C. SERS active gold nanostar dimer for mercury ion detection[J]. Chemical Communications, 2013.

[19] Temiz H T, Boyao I H, Grabchev I, et al.. Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116: 339-347.

[20] Eshkeiti A, Narakathu B B, Reddy A S G, et al.. A novel inkjet printed surface enhanced raman spectroscopy (SERS) substrate for the detection of toxic heavy metals[J]. Procedia Engineering, 2011, 25: 338-341.

[21] Wang H, Campiglia A D. Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography[J]. Analytical Chemistry, 2008, 80(21): 8202-8209.

[22] Li H, Wang L. Highly Selective detection of polycyclic aromatic hydrocarbons using multifunctional magneticluminescent molecularly imprinted polymers[J]. ACS Applied Materials & Interfaces, 2013.

[23] 龚继来, 吕璞, 曾光明. 表面增强拉曼光谱在环境分析中的研究进展[J]. 光学传感器, 2009, 29(3): 8-12.

    Gong Jilai, Lü Pu, Zeng Gangming. Recnet advancements in environmental analysis based on surface-enhanced Raman spectroscoy[J]. Chemical Sensors, 2009, 29(3): 8-12.

[24] 谢云飞, 王旭. 基于表面增强拉曼散射光谱技术在多环芳烃检测方面的应用[J]. 光谱学与光谱分析, 2011, 31(9): 2319-2323.

    Xie Yunfei, Wang Xu. The application of surface Raman spectroscopy, technology in detecting PAHs[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2319-2323.

[25] Leyton P, Sanchez- Cortes S, Garcia- Ramos J V, et al.. Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on calix [4] arene- functionalized Ag nanoparticles by surface- enhanced Raman scattering[J]. The Journal of Physical Chemistry B, 2004, 108(45): 17484-17490.

[26] Leyton P, Domingo C, Sanche- Cortes S, et al.. Surface enhanced vibrational (IR and Raman) spectroscopy in the design of chemosensors based on ester functionalized p- tert- butylcalix [4] arene hosts[J]. Langmuir, 2005, 21(25): 11814-11820.

[27] Leyton P, Sanche-Cortes S, Campo-Vallette M, et al.. Surface-enhanced micro-Raman detection and characterization of calix [4] arene-polycyclic aromatic hydrocarbon host-guest complexes[J]. Applied Spectroscopy, 2005, 59(8): 1009-1015.

[28] Guerrini L, Garcia- Rames J V, Domingo E, et al.. Sensing polycyclic aromatic hydrocarbons with dithiocarbamatefunctionalized Ag nanoparticles by surface-enhanced Raman scattering[J]. Analytical chemistry, 2009, 81(3): 953-960.

[29] Shi X, Kwon Y H, Ma J, et al.. Trace analysis of polycyclic aromatic hydrocarbons using calixarene layered gold colloid film as substrates for surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy. 2013, 44(1): 41-46.

[30] Kwon Y H, Sowoidnich K, Schmidt H, et al.. Application of calixarene to high active surface- enhanced Raman scattering (SERS) substrates suitable for in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater[J]. Journal of Raman Spectroscopy, 2012, 43(8): 1003-1009.

[31] Shi X, Ma J, Zheng R, et al.. An improved self- assembly gold colloid film as surface- enhanced Raman substrate for detection of trace- level polycyclic aromatic hydrocarbons in aqueous solution[J]. Journal of Raman Spectroscopy, 2012, 43(10): 1354-1359.

[32] Qu L L, Li Y T, Li D W, et al.. Humic acids- based one- step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons[J]. Analyst, 2013, 138(5): 1523-1528.

[33] Xie Y, Wang X, Han X, et al.. Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs[J]. Journal of Raman Spectroscopy, 2011, 42(5): 945-950.

[34] I López-Tocón, J C Otero, J F Arenas, et al.. Multicomponent direct detection of polycyclic aromatic hydrocarbons by srface- enhanced raman spectroscopy using silver nanoparticles functionalized with the viologen host lucigenin[J]. Analytical chemistry, 2011, 83(7): 2518-2525.

[35] H Zhang, M H Harpster, H J Park, et al.. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman- active gold nanoparticles[J]. Analytical Chemistry, 2010, 83(1): 254-260.

[36] H Zhang, M H Harpster, W C Wilson, et al.. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles[J]. Langmuir, 2012, 28(8): 4030-4037.

[37] M Kahraman, M M Yazici, F Sahin, et al.. Convective assembly of bacteria for surface- enhanced Raman scattering[J]. Langmuir, 2008, 24(3): 894-901.

[38] C Fan, Z Hu, L K Riley, et al.. Detecting food- and waterborne viruses by surface- enhanced raman spectroscopy[J]. Journal of Food Science, 2010, 75(5): M302-M307.

[39] Y Xie, L Xu, Y Wang, et al.. Label- free detection of the foodborne pathogens of Enterobacteriaceae by surfaceenhanced Raman spectroscopy[J]. Analytical Methods, 2013, 5(4): 946-952.

[40] S J Park, T A Taton, C A Mirkin. Array- based electrical detection of DNA with nanoparticle probes[J]. Science, 2002, 295(5559): 1503-1506.

[41] H W Cheng, S Y Huan, H L Wu, et al.. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates[J]. Analytical Chemistry, 2009, 81(24): 9902-9912.

[42] H W Cheng, Y Y Chen, X X Lin, et al.. Surface- enhanced Raman spectroscopic detection of Bacillus subtilis spores using gold nanoparticle based substrates[J]. Analytica Chimica Acta, 2011, 707(1): 155-163.

[43] D P Cowcher, Y Xu, R Goodacre. Portable, Quantitative detection of bacillus bacterial spores using surface-enhanced raman scattering[J]. Analytical Chemistry, 2013, 85(6): 3297-3302.

[44] A D Strickland, C A Batt. Detection of carbendazim by surface- enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods[J]. Analytical Chemistry, 2009, 81(8): 2895-2903.

[45] X Wang, X T Wang, W S Shi, et al.. High- performance surface- enhanced Raman scattering sensors based on Ag nanoparticles- coated Si nanowire arrays for quantitative detection of pesticides[J]. Applied Physics Letters, 2010, 96(5): 053104.

[46] B Liu, P Zhou, X Liu, et al.. Detection of pesticides in fruits by surface- enhanced raman spectroscopy coupled with gold nanostructures[J]. Food and Bioprocess Technology, 2013, 6(3): 710-718.

[47] B Saute, R Premasiri, L Ziegler, et al.. Gold nanorods as surface enhanced raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides[J]. Analyst, 2012, 137(21): 5082-5087.

[48] X Zhou, F Zhou, H Liu, et al.. Assembly of polymer-gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection[J]. Analyst, 2013, 138(19): 5832-5838.

杨盼, 丁帅军, 陈凡圣, 施金乐, 胡建明. 表面增强拉曼光谱技术在环境污染物检测中的应用[J]. 激光与光电子学进展, 2014, 51(3): 030003. Yang Pan, Ding Shuaijun, Chen Fansheng, Shi Jinle, Hu Jianming. Application of Surface-Enhanced Raman Spectrum Technology in Detecting Environment Pollutants[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!