作者单位
摘要
中国科学院苏州生物医学工程技术研究所医用检验技术研究室, 江苏 苏州 215163
病原微生物是指可侵犯人体, 引起感染的微生物, 临床上由病原微生物感染引发的疾病极为常见。 传统的临床病原菌诊断主要依赖于细菌培养, 但此方法耗时长, 往往需要2~5 d才能得到检测结果, 并且存在部分细菌培养困难甚至无法培养的问题。 在无法鉴别菌种以及药物敏感性的情况下医生凭借经验使用广谱抗生素, 加速了细菌耐药性的产生。 因此, 病原微生物的高灵敏快速检测方法研究成为重要研究方向。 拉曼光谱技术是一种对待测样品进行原位、 非侵入性检测的技术, 可在单细胞水平上提供微生物细胞中不同生物分子的指纹图谱信息, 通过这些信息可以确定微生物的种类、 生理特征和突变表型等, 实现对微生物样品的快速检测。 随着激光光谱学的快速发展以及临床需求的不断增加, 促使了以拉曼光谱检测技术为核心的亚技术诞生(如: 表面增强拉曼光谱技术、 傅里叶变换拉曼光谱技术、 激光共振拉曼光谱技术、 共聚焦显微拉曼光谱技术、 相干反斯托克斯拉曼光谱以及受激拉曼光谱等相关技术), 同时改善了以往拉曼光谱技术信号强度弱的不足, 以实现对微生物高精度的快速检测分析。 凭借着其具有对样本的状态没有限制以及能够检测物质成分微小变化的优势, 近年来对拉曼光谱在病原微生物领域的研究日渐增多。 对微生物检测的研究现状进行了调查和分析, 围绕着拉曼光谱技术原理对其在微生物检测中的应用进行了具体阐述, 其中主要对该技术在病原微生物鉴定以及药敏检测中的研究进展展开讨论, 并就其与传统检测技术之间的差别和优势进行分析, 展示了拉曼光谱技术作为病原微生物的快速检测新方法的前景。
拉曼光谱技术 病原微生物 快速检测 病原菌鉴定 药敏分析 Raman spectroscopy Pathogenic microorganism Rapid detection Pathogenidentification Antimicrobial susceptibility test 
光谱学与光谱分析
2022, 42(12): 3653
作者单位
摘要
1 重庆医科大学检验医学院, 临床检验诊断学教育部重点实验室, 重庆 400016
3 中国科学院青岛生物能源与过程研究所单细胞中心, 山东 青岛 266101
4 重庆市公共卫生医疗救治中心, 中心实验室, 重庆 400036
5 青岛星赛生物科技有限公司, 山东 青岛 266101
非结核分枝杆菌(NTM)是除结核分枝杆菌复合群(MTC)和麻风分支杆菌以外的分枝杆菌总称。 近年来NTM导致人类感染的发病率不断上升, 其感染的临床症状与MTC感染极为相似, 但两者治疗方案却存在差异, 临床亟须快速、 准确的鉴定方法用于诊断NTM感染。 单细胞拉曼光谱技术(SCRS)具有非标记、 免培养、 快速、 准确、 低成本等优势。 据此, 我们提出了一种基于显微共聚焦单细胞拉曼光谱技术鉴定NTM的方法。 通过对临床常见的六种NTM(脓肿分枝杆菌、 戈登分枝杆菌、 偶发分枝杆菌、 土分枝杆菌、 鸟分枝杆菌以及堪萨斯分枝杆菌)的拉曼光谱进行处理比较, 并结合峰位注释进行分析。 采用无监督低维可视化的t-分布式随机邻域嵌入方法展示六种NTM的拉曼数据结构, 证明其数据在低维空间上的可分性后, 比较分类中常用的六种分类器[支持向量机分析(SVM)、 K最近邻分类算法(KNN)、 偏最小二乘判别分析(PLS-DA)、 随机森林(RF)、 线性判别分析(LDA)、 XG Boost]的效果。 SVM和LDA在NTM分类中效果最好, 分别达到了99.4%和98.8%的测试准确率; SVM仅对于堪萨斯分枝杆菌(97.96%, 48/49)的分类准确性略低, 其余均为100%; LDA对于脓肿分枝杆菌(95.65%, 22/23)和戈登分枝杆菌(96.30%, 26/27), 其余也均为100%。 因此, 单细胞拉曼检测结合SVM分类器为NTM快速准确鉴定提供了富有潜力的新工具。
单细胞拉曼技术 非结核分枝杆菌 病原微生物鉴定 支持向量机分析 Single-cell Raman Spectroscopy Non-tuberculosis mycobacteria Pathogenic microorganism identification Support Vector Machine 
光谱学与光谱分析
2021, 41(11): 3468
作者单位
摘要
1 重庆师范大学物理与电子工程学院, 重庆 401331
2 成都绿色能源与绿色制造技术研发中心, 四川 成都 610207
表面增强拉曼散射(SERS)光谱具有高灵敏性及高选择性,它已被用于科学研究及生产实践的多个领域。本文阐述了近几年来SERS 技术在检测重金属离子、多环芳烃、微生物、农药等环境污染物中的发展状况,并分析了该技术在这些应用领域的优点与不足。最后,预测了SERS 的发展趋势。
表面光学 表面增强拉曼 重金属 农药残留 病原微生物 
激光与光电子学进展
2014, 51(3): 030003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!