光电工程, 2017, 44 (10): 1004, 网络出版: 2017-11-27  

带有侧耦合腔的Y型MIM波导的传输特性研究

Transmission characteristics of a Y-shaped MIM plasmonic waveguide with side-coupled cavities
作者单位
1 山西大学物理电子工程学院,太原 030006
2 山西大学现代教育技术学院,太原 030006
摘要
本文设计了一种带有两个水平侧耦合Fabry-Perot (FP)共振腔的基于金属-绝缘体-金属(MIM)结构的Y型表面等离子体光波导结构。传输谱存在一个较窄的阻带,两个腔的长度相同时,两个输出端的传输谱几乎完全重合;两个腔长度不同时每个输出端的传输谱上的阻带位置也不同,并且当一个输出端透射率达到最小时,另一个输出端的透射率接近最大。通过调节两个FP共振腔的长度、宽度以及腔内介质的折射率,可以调节表面等离子体激元在腔内发生共振从而形成驻波的工作波长,实现探测灵敏度高达1280 nm/RIU、品质因子大于200的传感特性。利用这些特性可以在两个输出端对不同的工作波长实现滤波、开关、分束等功能,因此这种亚波长表面等离子体光波导结构在集成光学滤波器、纳米光开关、分束器以及折射率传感器等领域有一定的应用前景。
Abstract
A plasmonic Y-shaped metal-insulator-metal (MIM) plasmonic waveguide with two side-coupled Fab-ry–Perot (FP) resonant cavities is proposed. Simulation results show that there is a stopband existing in the transmission spectrum of each output port. When the lengths of the two cavities are equal, the transmission spectra of the two output ports are almost coincident. But if they are not equal, the two stopbands are not in the same place. Meanwhile, the transmission dip of one output port corresponds to the transmission peak of another port. By adjusting the length, width and refractive index of the two FP cavities, one can control the resonant wavelength of each cavity to further achieve functions of filtering, power splitting, switching and refractive index sensing. Results show that the sensing sensitivity is up to 1280 nm/RIU with its figure of merit above 200 when the waveguide is used as a refractive sensor. The proposed waveguide structure has potential applications in the fields of integrated optical filter, nano-optic switch, power splitter and refractive sensor in subwavelength scale.
参考文献

[1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824–830.

[2] 林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J]. 光电工程, 2017, 44(3): 289–296.

    Lin Jiao, Wang Dapeng, Si Guangyuan. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289–296.

[3] Bian Yusheng, Gong Qihuang. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for sub-wavelength light confinement[J]. Applied Optics, 2013, 52(23): 5733–5741.

[4] Dai Daoxin, He Sailing. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confine-ment[J]. Optics Express, 2009, 17(19): 16646–16653.

[5] Taubert R, Hentschel M, Giessen H. Plasmonic analog of electromagnetically induced absorption: Simulations, ex-periments, and coupled oscillator analysis[J]. Journal of the Optical Society of America B, 2013, 30(12): 3123–3134.

[6] Han Zhanghua, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons[J]. Reports on Progress in Physics, 2013, 76(1): 016402.

[7] 方佳文, 张明, 张飞, 等. 基于Fano共振的等离子体共振传感器[J]. 光电工程, 2017, 44(2): 221–225.

    Fang Jiawen, Zhang Ming, Zhang Fei, et al. Plasmonic sensor based on Fano resonance[J]. Opto-Electronic Engineering, 2017, 44(2): 221–225.

[8] Pu Mingbo, Ma Xiaoliang, Li Xiong, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures[J]. Journal of Materials Chemistry C, 2017, 5(18): 4361–4378.

[9] Nikolajsen T, Leosson K. Surface plasmon polariton based modulators and switches operating at telecom wavelengths[J]. Applied Physics Letters, 2004, 85(24): 5833–5835.

[10] Liu Jianqiang, Wang Lingling, He Mengdong, et al. A wide bandgap plasmonic Bragg reflector[J]. Optics Express, 2008, 16(7): 4888–4894.

[11] Tao Jin, Wang Qijie, Huang Xuguang. All-optical plasmonic switches based on coupled nano-disk cavity structures con-taining nonlinear material[J]. Plasmonics, 2011, 6(4): 753–759.

[12] Veronis G, Fan Shanhui. Bends and splitters in met-al-dielectric-metal subwavelength plasmonic waveguide[J]. Applied Physics Letters, 2005, 87(13): 131102.

[13] Gao Hongtao, Shi Haofei, Wang Changtao, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J]. Optics Express, 2005, 13(26): 10795–10800.

[14] Hosseini A, Massoud Y. Nanoscale surface plasmon based resonator using rectangular geometry[J]. Applied Physics Letters, 2007, 90(18): 181102.

[15] 吴德昌, 杨树. 等离子体诱导透明的T形-圆形波导滤波器[J]. 发光学报, 2016, 37(10): 1287–1291.

    Wu Dechang, Yang Shu. Double-sided T-shaped-disk waveguide filters based on plasmon-induced transparency[J]. Chinese Journal of Luminescence, 2016, 37(10): 1287–1291.

[16] Tao Jin, Huang Xuguang, Lin Xianshi, et al. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure[J]. Optics Express, 2009, 17(16): 13989–13994.

[17] Tao Jin, Huang Xuguang, Zhu Jiahu. A wavelength demulti-plexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators[J]. Optics Express, 2010, 18(11): 11111–11116.

[18] Zhu Jiahu, Huang Xuguang, Tao Jin, et al. A nanometeric plasmonic wavelength demultiplexer based on a T-shaped waveguide structure with double teeth-shaped waveguide at telecommunication wavelengths[J]. Journal of Modern Optics, 2010, 57(21): 2154–2158.

[19] Hu Feifei, Yi Huaxiang, Zhou Zhiping. Wavelength demulti-plexing structure based on arrayed plasmonic slot cavities[J]. Optics Letters, 2011, 36(8): 1500–1502.

[20] Lu Hua, Liu Xueming, Gong Yongkang, et al. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities[J]. Optics Express, 2011, 19(14): 12885–12890.

[21] Wang Tongbiao, Wen Xiewen, Yin Chengping, et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Optics Express, 2009, 17(26): 24096–24101.

[22] Yun Binfeng, Hu Guohua, Cui Yiping. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular met-al-insulator-metal waveguide[J]. Journal of Physics D: Applied Physics, 2010, 43(38): 385102.

[23] Setayesh A, Mirnaziry S R, Abrishamian M S. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator[J]. Journal of Optics, 2011, 13(3): 035004.

[24] Lin Xianshi, Huang Xuguang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Optics Letters, 2008, 33(23): 2874–2876.

[25] Hwang Y, Kim J E, Park H Y. Frequency selective met-al-insulator-metal splitters for surface plasmons[J]. Optics Communications, 2011, 284(19): 4778–4781.

[26] 李娟, 王冰艳, 薛文瑞. 基于MIM型表面等离子体光波导的Y形分束器的传输特性研究[J]. 光学学报, 2012, 32(1): 0124002.

    Li Juan, Wang Bingyan, Xue Wenrui. Propagation properties of Y-splitters based on MIM surface plasmonic waveguides[J]. Acta Optica Sinica, 2012, 32(1): 0124002.

[27] Wen Kunhua, Hu Yihua, Chen Li, et al. Plasmonic bidirec-tional/unidirectional wavelength splitter based on met-al-dielectric-metal waveguides[J]. Plasmonics, 2016, 11(1): 71–77.

[28] Veronis G, Fan Shihui. Bends and splitters in met-al-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 2005, 87(13): 131102.

[29] 秦小娟, 郭亚楠, 薛文瑞. 双正方形中空表面等离子体光波导的传输特性研究[J]. 光学学报, 2010, 30(12): 3537–3541.

    Qin Xiaojuan, Guo Ya’nan, Xue Wenrui. Propagation prop-erties of a surface-plasmonic waveguide with a dou-ble-square- shaped air core[J]. Acta Optica Sinica, 2010, 30(12): 3537– 3541.

[30] Li Qiang, Wang Tao, Su Yikai, et al. Coupled mode theory analysis of mode-splitting in coupled cavity system[J]. Optics Express, 2010, 18(8): 8367–8382.

[31] 蒋永翔, 刘炳红, 朱晓松, 等. 镀银空芯光纤表面等离子体共振传感器的研究[J]. 光学学报, 2014, 34(2): 0223004.

    Jiang Yongxiang, Liu Binghong, Zhu Xiaosong, et al. Study of silver coated hollow-core fiber surface plasmon resonance sensor[J]. Acta Optica Sinica, 2014, 34(2): 0223004.

[32] Chen Jianjun, Li Zhi, Zou Yujiao, et al. Coupled-resonator- induced Fano resonances for plasmonic sensing with ul-tra-high figure of merits[J]. Plasmonics, 2013, 8(4): 1627–1631.

[33] Wen Kunhua, Hu Yihua, Chen Li, et al. Subwavelength filter and sensor design based on end-coupled composited ring- groove resonator[J]. Opto-Electronic Engineering, 2017, 44(2): 192–197.

伊兴春, 田晋平, 杨荣草. 带有侧耦合腔的Y型MIM波导的传输特性研究[J]. 光电工程, 2017, 44(10): 1004. Xingchun Yi, Jinping Tian, Rongcao Yang. Transmission characteristics of a Y-shaped MIM plasmonic waveguide with side-coupled cavities[J]. Opto-Electronic Engineering, 2017, 44(10): 1004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!