International Journal of Extreme Manufacturing, 2020, 2 (1): , Published Online: --  

Deformation and removal of semiconductor and laser single crystals at extremely small scales

Author Affiliations
Copy Citation Text

. Deformation and removal of semiconductor and laser single crystals at extremely small scales[J]. International Journal of Extreme Manufacturing, 2020, 2(1): .

References

[1] Shiraishi Y, Takano K, Matsubara J, Iida T, Takase N, Machida N, Kuramoto M and Yamagishi H 2001 Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg J. Cryst. Growth 229 17–21

[2] Rudolph P and Jurisch M 1999 Bulk growth of GaAs: an overview J. Cryst. Growth 198 325–35

[3] Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brützam M, Bertram R, Ganschow S and Fornari R 2010 Czochralski growth and characterization of β-Ga2O3 single crystals Cryst. Res. Technol. 45 1229–36

[4] Golubovic A, Nikolic S, Gajic R, Duric S and Valcic A 2002 The growth of Nd:YAG single crystals J. Serb. Chem. Soc. 67 291–300

[5] Liu W, Zhang Q, Sun D, Luo J, Gu C, Jiang H and Yin S 2011 Crystal growth and spectral properties of Sm:GGG crystal J. Cryst. Growth 331 83–6

[6] Vandeperre L J, Giuliani F, Lloyd S J and Clegg W J 2007 The hardness of silicon and germanium Acta Mater. 55 6307–15

[7] Liu K, Li X P and Liang S Y 2007 The mechanism of ductile chip formation in cutting of brittle materials Int. J. Adv. Manuf. Technol. 33 875–84

[8] Antwi E K, Liu K and Wang H 2018 A review on ductile mode cutting of brittle materials Front. Mech. Eng. 13 251–63

[9] Bifano T G, Dow T A and Scattergood R O 1991 Ductileregime grinding: a new technology for machining brittle materials J. Manuf. Sci. Eng. 113 184–9

[10] Phillips J C 1970 Bonds and bands in semiconductors: new insight into covalent bonding in crystals has followed from studies of energy-band spectroscopy Science 169 1035–42

[11] Lee S 2018 Advanced Material and Device Applications with Germanium (Rijeka: IntechOpen)

[12] https://en.wikipedia.org/w/index.php?title=Silicon&oldid= 944103337

[13] Baca A G and Ashby C I H 2005 Fabrication of GaAs Devices (London: The Institution of Electrical Engineers)

[14] Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Deep ultraviolet photodiodes based on β- Ga2O3/SiC heterojunction Appl. Phys. Lett. 103 072105

[15] Mihokova E, Nikl M, Mares J A, Beitlerova A, Vedda A, Nejezchleb K, Blazek K and D’Ambrosio C 2007 Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics J. Lumin. 126 77–80

[16] Li C, Zhang F H, Meng B B, Rao X S and Zhou Y 2017 Research of material removal and deformation mechanism for single crystal GGG (Gd3Ga5O12) based on varied-depth nanoscratch testing Mater. Des. 125 180–8

[17] Wu Y Q, Gao S and Huang H 2017 The deformation pattern of single crystal beta-Ga2O3 under nanoindentation Mater. Sci. Semicond. Proc. 71 321–5

[18] Li Z C, Liu L, Wu X, He L L and Xu Y B 2002 TEM observation of the phase transition in indented GaAs Mater. Lett. 55 200–4

[19] Stepanov S I, Nikolaev V I, Bougrov V E and Romanov A E 2016 Gallium oixde: properties and applications—a review Rev. Adv. Mater. Sci. 44 63–86

[20] Gao S, Wu Y Q, Kang R K and Huang H 2018 Nanogrinding induced surface and deformation mechanism of single crystal beta-Ga2O3 Mater. Sci. Semicond. Proc. 79 165–70

[21] Li C, Li X L, Wu Y Q, Zhang F H and Huang H 2019 Deformation mechanism and force modelling of the grinding of YAG single crystals Int. J. Mach. Tool Manuf. 143 23–37

[22] Carruthers J R, Kokta M, Barns R L and Grasso M 1973 Nonstoichiometry and crystal growth of gadolinium gallium garnet J. Cryst. Growth 19 204–8

[23] Pardavi-Horváth M 1984 Microhardness and brittle fracture of garnet single crystals J. Mater. Sci. 19 1159–70

[24] Yang P Z, Deng P Z, Yin Z W and Tian Y L 2000 The growth defects in Czochralski-grown Yb:YAG crystal J. Cryst. Growth 218 87–92

[25] Voronkov V V and Falster R 2002 Intrinsic point defects and impurities in silicon crystal growth J. Electrochem. Soc. 149 G167–74

[26] Falster R and Voronkov V V 2000 On the properties of the intrinsic point defects in silicon: a perspective from crystal growth and wafer processing Phys. Status Solidi b 222 219–44

[27] Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2000 Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon Appl. Phys. Lett. 77 3749–51

[28] Wu Y Q, Huang H, Zou J, Zhang L C and Dell J M 2010 Nanoscratch-induced phase transformation of monocrystalline Si Scr. Mater. 63 847–50

[29] Le Bourhis E and Patriarche G 2008 Structure of nanoindentations in heavily n- and p-doped (001) GaAs Acta Mater. 56 1417–26

[30] Bhat H L 2015 Introduction to Crystal Growth: Principles and Practice (London: Taylor and Francis)

[31] Queisser H J and Haller E E 1998 Defects in semiconductors: some fatal, some vital Science 281 945–50

[32] Mujica A, Rubio A, Munoz A and Needs R J 2003 Highpressure phases of group-IV, III-V, and II-VI compounds Rev. Mod. Phys. 75 863–912

[33] Rapp L, Haberl B, Pickard C J, Bradby J E, Gamaly E G, Williams J S and Rode A V 2015 Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion Nat. Commun. 6 7555

[34] Domnich V G , Y 2002 Phase transformations in silicon under contact loading Rev. Adv. Mater. Sci. 3 1–36

[35] Yin M T and Cohen M L 1980 Microscopic theory of the phase-transformation and lattice-dynamics of Si Phys. Rev. Lett. 45 1004–7

[36] Hu J Z, Merkle L D, Menoni C S and Spain I L 1986 Crystal data for high-pressure phase of silicon Phys. Rev. B 34 4679–84

[37] Kim D E and Oh S I 2006 Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation Nanotechnology 17 2259–65

[38] Chrobak D, Nordlund K and Nowak R 2007 Nondislocation origin of GaAs nanoindentation pop-in event Phys. Rev. Lett. 98 045502

[39] Wu K H, Yan X Q and Chen M W 2007 In situ Raman characterization of reversible phase transition in stressinduced amorphous silicon Appl. Phys. Lett. 91 101903

[40] Demangeot F, Puech P, Domnich V, Gogotsi Y G, Pinel S, Pizani P S and Jasinevicius R G 2002 Raman mapping devoted to the phase transformation and strain analysis in Si micro-indentation Adv. Eng. Mater. 4 543–6

[41] Gogotsi Y, Baek C and Kirscht F 1999 Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon Semicond. Sci. Technol. 14 936–44

[42] Kailer A, Nickel K G and Gogotsi Y G 1999 Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations J. Raman Spectrosc. 30 939–46

[43] Huang H, Chen W K and Kuriyagawa T 2007 Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts Int. J. Mach. Tool Manuf. 47 2237–45

[44] Pei Z J, Fisher G R, Bhagavat M and Kassir S 2005 A grinding-based manufacturing method for silicon wafers: an experimental investigation Int. J. Mach. Tool Manuf. 45 1140–51

[45] Zhang Z Y, Guo D M, Kang R K, Gao H, Jin Z J and Meng Y W 2010 Subsurface crystal lattice deformation machined by ultraprecision grinding of soft-brittle CdZnTe crystals Int. J. Adv. Manuf. Technol. 47 1065–81

[46] Zhang Z Y, Huo F W, Wu Y Q and Huang H 2010 Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material Int. J. Mach. Tool Manuf. 51 18–24

[47] Zhang Z Y, Meng Y W, Guo D M, Wu L L, Tian Y J and Liu R P 2010 Material removal mechanism of precision grinding of soft-brittle CdZnTe wafers Int. J. Adv. Manuf. Technol. 46 563–9

[48] Zhou L B, Shimizu J, Shinohara K and Eda H 2003 Threedimensional kinematical analyses for surface grinding of large scale substrate Precis. Eng. 27 175–84

[49] Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2001 Mechanical deformation in silicon by microindentation J. Mater. Res. 16 1500–7

[50] Chang L and Zhang L C 2009 Deforamtion mechanisms at pop-out in monocrystalline silicon under nanoindentation Acta Mater. 57 2148–53

[51] Wu Y Q, Yang X Y and Xu Y B 1999 Cross-sectional electron microscopy observation on the amorphized indentation region in [001] single-crystal silicon Acta Mater. 47 2431–6

[52] Zarudi I, Zhang L C and Swain M V 2003 Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter Appl. Phys. Lett. 82 1027–9

[53] Zhang L C and Tanaka H 1999 On the mechanics and physics in the nano-indentation of silicon monocrystals JSME Int. J. A 42 546–59

[54] Zarudi I, Zhang L C, Cheong W C D and Yu T X 2005 The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters Acta Mater. 53 4795–800

[55] Yan J W, Takahashi H, Gai X H, Harada H, Tamaki J and Kuriyagawa T 2006 Load effects on the phase transformation of single-crystal silicon during nanoindentation tests Mater. Sci. Eng. A 423 19–23

[56] Ruffell S, Bradby J E, Williams J S and Munroe P 2007 Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon J. Appl. Phys. 102 063521

[57] Jang J I, Lance M J, Wen S Q, Tsui T Y and Pharr G M 2005 Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior Acta Mater. 53 1759–70

[58] Ge D B, Domnich V and Gogotsi Y 2003 High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation J. Appl. Phys. 93 2418–23

[59] Bradby J E, Williams J S and Swain M V 2003 In situ electrical characterization of phase transformations in Si during indentation Phy. Rev. B 67 085205

[60] Wu Y Q, Huang H, Zou J and Dell J M 2009 Nanoscratchinduced deformation of single crystal silicon J. Vac. Sci. Technol. B 27 1374–7

[61] Zarudi I, Zou J, McBride W and Zhang L C 2004 Amorphous structures induced in monocrystalline silicon by mechanical loading Appl. Phys. Lett. 85 932–4

[62] Zhang L C and Zarudi I 2001 Towards a deeper understanding of plastic deformation in mono-crystalline silicon Int. J. Mech. Sci. 43 1985–96

[63] Zarudi I and Zhang L C 1999 Structure changes in monocrystalline silicon subjected to indentation - experimental findings Tribol. Int. 32 701–12

[64] Zhang Z Y, Cui J F, Chang K K, Liu D D, Chen G X, Jiang N and Guo D M 2019 Deformation induced new pathways in silicon Nanoscale 11 9862–8

[65] Minor A M, Lilleodden E T, Jin M, Stach E A, Chrzan D C and Morris J W 2005 Room temperature dislocation plasticity in silicon Phil. Mag. 85 323–30

[66] Ruffell S, Bradby J E and Williams J S 2006 High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon Appl. Phys. Lett. 89 091919

[67] Lloyd S J, Molina-Aldareguia J M and Clegg W J 2001 Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy J. Mater. Res. 16 3347–50

[68] Zarudi I, Zou J and Zhang L C 2003 Microstructures of phases in indented silicon: a high resolution characterization Appl. Phys. Lett. 82 874–6

[69] Lin Y H, Jian S R, Lai Y S and Yang P F 2008 Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon Nanoscale Res. Lett. 3 71–5

[70] Lin Y H, Chen T C, Yang P F, Jian S R and Lai Y S 2007 Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon Appl. Surf. Sci. 254 1415–22

[71] Jeong S M and Kitamura T 2007 Atomistic simulation on the phase transformation of silicon under nonhydrostatic stress Japan. J. Appl. Phys. 1 5924–9

[72] Cheong W C D and Zhang L C 2000 Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation Nanotechnology 11 173–80

[73] Ivashchenko V I, Turchi P E A and Shevchenko V I 2008 Simulations of indentation-induced phase transformations in crystalline and amorphous silicon Phys. Rev. B 78 035205

[74] Schall J D, Gao G and Harrison J A 2008 Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential Phys. Rev. B 77 115209

[75] Luo Y R 2003 Bond Dissociation Energies (Boca Raton, FL: CRC Press) p 65

[76] Wang S and Pirouz P 2007 Mechanical properties of undoped GaAs: III. Indentation experiments Acta Mater. 55 5526–37

[77] Taylor C R, Malshe A P, Salamo G, Prince R N, Riester L and Cho S O 2005 Characterization of ultra-low-load (mu N) nanoindents in GaAs(100) using a cube corner tip Smart Mater. Struct. 14 963–70

[78] Patriarchey G, Largeau L, Riviere J P and Le Bourhis E 2004 Vickers indentation of thin GaAs(001) samples Phil. Mag. 84 3281–98

[79] Patriarche G and Le Bourhis E 2003 Plasticity of misoriented (001) GaAs surface J. Mater. Sci. Lett. 22 565–7

[80] Largeau L, Patriarche G, Glas F and Le Bourhis E 2004 Absolute determination of the asymmetry of the in-plane deformation of GaAs(001) J. Appl. Phys. 95 3984–7

[81] Le Bourhis E and Patriarche G 2003 Effects of annealing on the structure of GaAs(001) nanoindentations Phil. Mag. Lett. 83 149–58

[82] Grillo S E, Ducarroir M, Nadal M, Tournie E and Faurie J P 2003 Nanoindentation of Si, GaP, GaAs and ZnSe single crystals J. Phys. D: Appl. Phys. 36 L5–9

[83] Li Z C, Liu L, Wu X, He L L and Xu Y B 2002 Indentation induced amorphization in gallium arsenide Mater. Sci. Eng. A 337 21–4

[84] Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2001 Mechanical deformation of InP and GaAs by spherical indentation Appl. Phys. Lett. 78 3235–7

[85] Wasmer K, Parlinska-Wojtan M, Gassilloud R, Pouvreau C, Tharian J and Micher J 2007 Plastic deformation modes of gallium arsenide in nanoindentation and nanoscratching Appl. Phys. Lett. 90 031902

[86] Bradby J E, Williams J S and Swain M V 2004 Pop-in events induced by spherical indentation in compound semiconductors J. Mater. Res. 19 380–6

[87] Le Bourhis E and Patriarche G 1999 Transmission electron microscopy observations of low-load indents in GaAs Phil. Mag. Lett. 79 805–12

[88] Taylor C R, Stach E A, Salamo G and Malshe A P 2005 Nanoscale dislocation patterning by ultralow load indentation Appl. Phys. Lett. 87 073108

[89] Jian S R, Fang T H, Chuu D S and Ji L W 2006 Atomistic modeling of dislocation activity in nanoindented GaAs Appl. Surf. Sci. 253 833–40

[90] Le Bourhis E and Patriarche G 2007 Nanoindentation response of compound semiconductors Phys. Status Solidi c 4 3002–9

[91] Le Bourhis E and Patriarche G 2007 TEM-nanoindentation studies of semiconducting structures Micron 38 377–89

[92] Le Bourhis E and Patriarche G 2003 Plastic deformation of III-V semiconductors under concentrated load Prog. Cryst. Growth Charact. 47 1–43

[93] Le Bourhis E and Patriarche G 2005 Mechcanical response of wall-patterned GaAs surface Acta Mater. 53 1907–12

[94] Pouvreau C, Wasmer K, Hessler-Wyser H, Ganiere J D, Breguet J M, Michler J, Schulz D and Giovanola J H 2013 Nanoindentation cracking in gallium arsenide: II. TEM investigation J. Mater. Res. 28 2799–809

[95] Parlinska-Wojtan M, Wasmer K, Tharian J and Michler J 2008 Microstructural comparison of material damage in GaAs caused by Berkovich and wedge nanoindentation and nanoscratching Scr. Mater. 59 364–7

[96] Li Z C, Liu L, He L L, Xu Y B and Wu X 2001 Shearactivated indentation crack in GaAs single crystal J. Mater. Res. 16 2845–9

[97] Schuh C A 2006 Nanoindentation studies of materials Mater. Today 9 32–40

[98] Wu Y Q, Gao S, Kang R K and Huang H 2019 Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars J. Mater. Sci. 54 1958–66

[99] Li C, Zhang F H, Wang X and Rao X S 2018 Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation Appl. Opt. 57 3661–8

[100] Li C, Zhang Q, Zhang Y B, Zhang F H, Wang X and Dong G J 2019 Nanoindentation and nanoscratch tests of YAG single crystals: an investigation into mechanical properties, surface formation characteristic, and theoretical model of edge-breaking size Ceram. Int. 46 3382–93

[101] Minowa K and Sumino K 1992 Stress-induced amorphization of a silicon crystal by mechanical scratching Phys. Rev. Lett. 69 320–2

[102] Zhao X Z and Bhushan B 1998 Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads Wear 223 66–78

[103] Gassilloud R, Ballif C, Gasser P, Buerki G and Michler J 2005 Deformation mechanisms of silicon during nanoscratching Phys. Status Solidi a 202 2858–69

[104] Youn S W and Kang C G 2006 Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (100) surface Wear 261 328–37

[105] Zarudi I and Zhang L C 2006 Microcracking in monocrystalline silicon due to indentation and scratching Key Eng. Mater. 312 345–50

[106] Jeong S N, Oh H S, Park S E and Lee H L 2003 Phase transformation of single crystalline silicon by scratching Japan. J. Appl. Phys. 42 2773–4

[107] Lee S H 2012 Analysis of ductile mode and brittle transition of AFM nanomachining of silicon Int. J. Mach. Tool Manuf. 61 71–9

[108] Tang F Z and Zhang L C 2014 Subsurface nanocracking in monocrystalline Si (001) induced by nanoscratching Eng. Fract. Mech. 124–125 262–71

[109] Zarudi I, Nguyen T and Zhang L C 2005 Effect of temperature and stress on plastic deformation in monocrystalline silicon induced by scratching Appl. Phys. Lett. 86 011922

[110] Takagi M, Onodera K, Matsumuro A, Iwata H, Sasaki K and Saka H 2008 TEM and HRTEM observations of microstructural change of silicon single crystal scratched under very small loading forces by AFM Mater. Trans. 49 1298–302

[111] Iizuka T and Okada Y 1994 Study of scratch-induced mechanical damage on silicon (111) surfaces Japan. J. Appl. Phys. 33 1427–34

[112] Gogotsi Y, Zhou G H, Ku S S and Cetinkunt S 2001 Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon Semicond. Sci. Technol. 16 345–52

[113] Zhang C, Zhu H, Jiang Z, Huang C and Wang J 2020 Removal mechanism and surface quality of crystal semiconductor materials in scratching tests with Berkovich indenter Mater. Sci. Semicond. Process. 105 104746

[114] Wu Y Q, Huang H and Zou J 2013 A focused review on nanoscratching-induced deformation of monocrystalline silicon Int. J. Surf. Sci. Eng. 7 51–80

[115] Minomura S and Drickamer H G 1962 Pressure induced phase transitions in silicon, germanium and some 3-5 compounds J. Phys. Chem. Solid. 23 451–6

[116] Cheng C, Huang W H and Li H J 2001 Thermodynamics of uniaxial phase transition: ab initio study of the diamond-tobeta -tin transition in Si and Ge Phys. Rev. B 63 153202

[117] Fang Q H and Zhang L C 2013 Prediction of the threshold load of dislocation emission in silicon during nanoscratching Acta Mater. 61 5469–76

[118] Wu H and Melkote S N 2012 Effect of crystallographic orientation on ductile scribing of crystalline silicon: role of phase transformation and slip Mater. Sci. Eng. A 549 200–5

[119] Wu H and Melkote S N 2012 Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers J. Eng. Mater. Technol. 134 041011

[120] Zhang Z Y, Wang B, Kang R K, Zhang B and Guo D M 2015 Changes in surface layer of silicon wafers from diamond scratching CIRP Ann. 64 349–52

[121] Zhang Z Y, Guo D M, Wang B, Kang R K and Zhang B 2015 A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut Sci. Rep. 5 16395

[122] Zhao Q L, Zhang Q L, To S E and Guo B 2017 Surface damage mechanism of monocrystalline si under mechanical loading J. Electron. Mater. 46 1862–8

[123] Wang B, Melkote S N, Saraogi S and Wang P 2020 Effect of scratching speed on phase transformations in high-speed scratching of monocrystalline silicon Mater. Sci. Eng. A 772 138836

[124] Alreja C and Subbiah S 2019 A study of scratch speed effects on ductile–brittle transition in silicon J. Micro Nano-Manuf. 7 024505

[125] Chavoshi S Z, Gallo S C, Dong H S and Luo X C 2017 High temperature nanoscratching of single crystal silicon under reduced oxygen condition Mater. Sci. Eng. A 684 385–93

[126] Mohammadi H, Ravindra D, Kode S K and Patten J A 2015 Experimental work on micro laser-assisted diamond turning of silicon (111) J. Manuf. Process. 19 125–8

[127] Alreja C and Subbiah S 2018 Low pressure phase transformations during high-speed, high-temperature scratching of silicon J. Micro Nano-Manuf. 6 041001

[128] Tang Q H and Chen F H 2006 MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip J. Phys. D: Appl. Phys. 39 3674–9

[129] Cheong W C D and Zhang L C 2003 Monocrystalline silicon subjected to multi-asperity sliding: nano-wear mechanisms, subsurface damage and effect of asperity interaction Int. J. Mater. Prod. Technol. 18 398–407

[130] Mylvaganam K and Zhang L C 2011 Nanotwinning in monocrystalline silicon upon nanoscratching Scr. Mater. 65 214–6

[131] Fang T H, Chang W J and Lin C M 2005 Nanoindentation and nanoscratch characteristics of Si and GaAs Microelectron. Eng. 77 389–98

[132] Wasmer K, Ballif C, Pouvreau C, Schulz D and Michler J 2008 Dicing of gallium-arsenide high performance laser diodes for industrial applications: I. Scratching operation J. Mater. Process. Technol. 198 114–21

[133] Wasmer K, Ballif C, Pouvreau C, Schulz D and Michler J 2008 Dicing of gallium-arsenide high performance laser diodes for industrial applications: II. Cleavage operation J. Mater. Process. Techol. 198 105–13

[134] Michler J, Rabe R, Bucaille J L, Moser B, Schwaller P and Breguet J M 2005 Investigation of wear mechanisms through in situ observation during microscratching inside the scanning electron microscope 15th Int. Conf. on Wear of Materials (San Diego, CA)

[135] Wu Y Q, Huang H and Zou J 2012 Lattice bending in monocrystalline GaAs induced by nanoscratching Mater. Lett. 80 187–90

[136] Wu Y Q 2011 Deformation Mechanisms of Semiconductor Materials under Nanoscratching and Nanogrinding PhD Dissertation The University of Queensland, Australia

[137] Li Z C, Liu L, Wu X, He L L and Xu Y B 2003 Structure at the crack tip in GaAs Phil. Mag. Lett. 83 217–21

[138] Li C, Zhang F H and Piao Y C 2019 Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal Ceram. Int. 45 15015–24

[139] Lundt H, Kerstan M, Huber A and Hahn P O 1994 Subsurface damage of abraded silicon wafers Proc. 7th Int. Symp. on Silicon Materials Science and Technology (Pennington, NJ: The Electrochemical Society) pp 218–24

[140] Guo D M, Tian Y B, Kang R K, Zhou L and Lei M K 2009 Material removal mechanism of chemo-mechanical Grinding (CMG) of Si wafer by using soft abrasive grinding wheel (SAGW) Advances in Abrasive Technology XI (Stafa: Trans Tech) pp 459–64

[141] Tian Y B, Zhou L, Shimizu J, Tashiro Y and Kang R K 2009 Elimination of surface scratch/texture on the surface of single crystal Si substrate in chemo-mechanical grinding (CMG) process Appl. Surf. Sci. 255 4205–11

[142] Wang Y G, Zhang L C and Biddut A 2011 Chemical effect on the material removal rate in the CMP of silicon wafers Wear 270 312–6

[143] Liu J H, Pei Z J and Fisher G R 2007 Grinding wheels for manufacturing of silicon wafers: a literature review Int. J. Mach. Tool Manuf. 47 1–13

[144] Pei Z J, Fisher G R and Liu J 2008 Grinding of silicon wafers: a review from historical perspectives Int. J. Mach. Tool Manuf. 48 1297–307

[145] Ahearne E and Byrne G 2004 Ultraprecision grinding technologies in silicon semiconductor processing Proc. Inst. Mech. Eng. B 218 253–67

[146] Pavi K V 1999 Materials quality and materials cost- are they on a collision course?? Solid State Phenom. 69/70 103–10

[147] Tonshoff H K and Hartmann M 1997 Polishing of semiconductor materials Forsch. Ingenieurwes. 63 7–12

[148] Pei Z J, Billingsley S R and Miura S 1999 Grinding induced subsurface cracks in silicon wafers Int. J. Mach. Tool Manuf. 39 1103–16

[149] Zhang Y X, Kang R K, Guo D M and Jin Z J 2007 Microstructure studies of the grinding damage in monocrystalline silicon wafers Rare Met. 26 13–8

[150] Malkin S 1989 Grinding Technology: Theory and Applications of Machining with Abrasives (Chichester: Ellis Horwood)

[151] Huang H and Liu Y C 2003 Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding Int. J. Mach. Tool Manuf. 43 811–23

[152] Ebina Y, Yoshimatsu T, Zhou L B, Shimizu J, Onuki T and Ojima H 2015 Process study on large-size silicon wafer grinding by using a small-diameter wheel J. Adv. Mech. Des. Syst. Manuf. 9 15–00406

[153] Huang H, Wang B L, Wang Y, Zou J and Zhou L 2008 Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding Mater. Sci. Eng. A 479 373–9

[154] Zhang Z Y, Wu Y Q, Guo D M and Huang H 2011 Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits Scr. Mater. 64 177–80

[155] Wang Y, Zou J, Huang H, Zhou L, Wang B L and Wu Y Q 2007 Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding Nanotechnology 18 465705

[156] Eda H, Zhou L B, Nakano H, Kondo R and Shimizu J 2001 Development of single step grinding system for large scale phi 300 Si wafer: a total integrated fixed-abrasive solution CIRP Ann. 50 225–8

[157] Huo F W, Kang R K, Li Z and Guo D M 2013 Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers Int. J. Mach. Tool Manuf. 66 54–65

[158] Luo S Y and Chen K C 2009 An experimental study of flat fixed abrasive grinding of silicon wafers using resin-bonded diamond pellets J. Mater. Process. Technol. 209 686–94

[159] Pei Z J and Strasbaugh A 2001 Fine grinding of silicon wafers Int. J. Mach. Tool Manuf. 41 659–72

[160] Venkatesh V C, Inasaki I, Toenshoff H K, Nakagawa T and Marinescu I D 1995 Observations on polishing and ultraprecision machining of semiconductor substrate materials CIRP Ann. 44 611–8

[161] Ngoi B K A and Sreejith P S 2000 Ductile regime finish machining—a review Int. J. Adv. Manuf. Technol. 16 547–50

[162] Young H T, Liao H T and Huang H Y 2006 Surface integrity of silicon wafers in ultra precision machining Int. J. Adv. Manuf. Technol. 29 372–8

[163] Zhou L B, Tian Y B, Huang H, Sato H and Shimizu J 2012 A study on the diamond grinding of ultra-thin silicon wafers Proc. Inst. Mech. Eng. B 226 66–75

[164] Kang R K 2003 Present status of research and application in ultra-precision grinding technology of large-scale silicon wafers Diam. Abrasives Eng. 136 13–8

[165] Yang Y, De Munck K, Teixeira R C, Swinnen B, Verlinden B and De Wolf I 2008 Process induced subsurface damage in mechanically ground silicon wafers Semicond. Sci. Technol. 23 075038

[166] Zarudi I and Zhang L C 1998 Effect of ultraprecision grinding on the microstructural change in silicon monocrystals J. Mater. Process. Technol. 84 149–58

[167] Li J, Fang Q H, Zhang L C and Liu Y W 2015 Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations Appl. Surf. Sci. 324 464–74

[168] Li X L, Huang S Q, Wu Y Q and Huang H 2019 Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates Precis. Eng. 60 291–8

[169] Ross D and Yamaguchi H 2018 Nanometer-scale characteristics of polycrystalline YAG ceramic polishing CIRP Ann. 67 349–52

. Deformation and removal of semiconductor and laser single crystals at extremely small scales[J]. International Journal of Extreme Manufacturing, 2020, 2(1): .

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!