Photonics Research, 2020, 8 (3): 03000225, Published Online: Feb. 10, 2020   

Subwavelength imaging and detection using adjustable and movable droplet microlenses Download: 832次

Author Affiliations
1 Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
2 e-mail: liyuchao@jnu.edu.cn
3 e-mail: zhyao5@jnu.edu.cn
Figures & Tables

Fig. 1. Droplet preparation and experimental setup. (a) Preparation process of the droplet microlenses. (b) Optical microscope images of the droplet microlenses showing they are spheroids of different sizes. (c) Schematic of the experimental setup. The inset shows a schematic of the microlens deformation.

下载图片 查看原文

Fig. 2. Focusing of the droplet microlenses in different sizes. (a) Optical microscope images of microlenses with diameters D of (a1) 8, (a2) 12, and (a3) 16 μm. (b) Simulated energy density distribution for each microlens. (c) L as a function of D at a fixed wavelength of 473 nm. (d) Waist radius (w) as a function of D at a fixed wavelength of 473 nm.

下载图片 查看原文

Fig. 3. Focusing of the droplet microlenses of different shapes. (a) Optical microscope images of microlenses with shapes of (a1) a sphere with a diameter D of 12 μm, (a2) an ellipsoid with a ratio between the semimajor and semiminor axes (A/B) of 1.3, and (a3) an ellipsoid with A/B=1.7. (b) Simulated energy density distribution for each microlens. (c) Focal length L and waist radius (w) of the output beams as functions of A/B at a fixed wavelength of 473 nm.

下载图片 查看原文

Fig. 4. Microlens array assembly and manipulation. (a) Schematic of the optical trapping and manipulation system. (b) Optical trapping of a single droplet microlens. (c) Optical trapping and manipulation of multiple droplet microlenses arranged in an array. (d) Optical microscope image of a 3×3 array of droplet microlenses with the same diameter D of 6.8±0.2  μm. (e), (f) Shifting of a 4×7 array of microlenses with D of 6.2–9.5 μm arranged in descending order.

下载图片 查看原文

Fig. 5. Subwavelength imaging. (a) Schematic of subwavelength imaging with the droplet microlens. (b) SEM image of the gratings of a commercial Blu-ray Disk (BD). Optical microscope images of the BD gratings with the assistance of droplet microlenses with diameters of (c) 4.8, (d) 7.7, and (e) 13.6 μm. (f) SEM image of the stack of PS nanoparticle layers formed by evaporation-induced assembly. Inset is a magnified view of the PS nanoparticles. (g) Size distribution of the PS nanoparticles. (h) Optical microscope image of the PS nanoparticles obtained with the assistance of a 2×2 microlens array. The inset shows the magnified imaging of the view field of the droplet microlens. (i) Intensity variation of (h) along the transverse cross section through the center of two light spots (α and β) from the PS nanoparticles (D=80  nm).

下载图片 查看原文

Fig. 6. Signal enhancement. (a) Optical microscope images of QD fluorescence enhancement. (a1) A QD cluster was located on the SiO2 slide, and then microlenses with diameters D of (a2) 11.8, (a3) 9.2, and (a4) 6.8 μm were separately moved right above the QD cluster. (b) Fluorescence images of the QD cluster captured (b1) without and (b2)–(b4) with the assistance of microlenses. (c) Profiles of the intensity distributions corresponding to the dark-field images. (d) Illustration of the model used to calculate the effective numerical aperture NAeff. (e) Schematic of the enhancement of Raman scattering signals from a silicon (Si) wafer. (f) Intensities of Raman scattering from the Si wafer without and with the assistance of the droplet microlenses with D of 45, 21, and 8 μm.

下载图片 查看原文

Fig. 7. Transmittance spectrum of 1-bromonaphthalene (C10H7Br) with the wavelength range from 300 to 900 nm.

下载图片 查看原文

Fig. 8. The diameter distribution of the droplet at f=80  kHz and t=5  min.

下载图片 查看原文

Fig. 9. Fluctuation region of Brownian motion of trapped microlens (D=1  μm) as a function of trapping power.

下载图片 查看原文

Fig. 10. Droplet microlens diameter versus intensity of Raman scattering signals. The fitting method is based on a polynomial fit.

下载图片 查看原文

Xixi Chen, Tianli Wu, Zhiyong Gong, Yuchao Li, Yao Zhang, Baojun Li. Subwavelength imaging and detection using adjustable and movable droplet microlenses[J]. Photonics Research, 2020, 8(3): 03000225.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!