中国激光, 2004, 31 (9): 1121, 网络出版: 2006-06-12  

差分吸收激光雷达测量环境SO2 下载: 674次

Differential Absorption Lidar for Environmental SO2 Measurements
作者单位
中国科学院安徽光学精密机械研究所大气光学实验室, 安徽 合肥 230031
摘要
提出了一种新的差分吸收激光雷达(DIAL)技术探测大气环境SO2。利用Nd:YAG激光器的四倍频266.0 nm抽运甲烷和氘气,可以获得它们的一级斯托克斯拉曼频移波长288.38 nm和289.04 nm。SO2对波长为289.04 nm的激光吸收较强,对288.38 nm的激光吸收较弱,波长对288.38 nm和289.04 nm可用于大气SO2的测量。利用这种技术,建立了一台测量大气SO2的差分吸收激光雷达,并进行了实际测量和初步研究,对激光雷达测量SO2误差的主要来源进行了分析,并估计了测量误差的大小。差分吸收激光雷达的测量结果与仪器测量结果相比具有可比性。
Abstract
In this paper a new technique of differential absorption lidar (DIAL) was presented for environmental SO2 measurements. The fourth harmonic of Nd:YAG laser was used to pump CH4 and D2 gas cell, and their first Stokes Raman-shifted wavelengths of 288.38 nm and 289.04 nm were gotten. Laser beam of 289.04 nm is rather strongly absorbed by SO2, but another laser beam of 288.38 nm is weakly absorbed. This wavelength pair of 288.38 nm and 289.04 nm can be used to measure environmental SO2 concentrations. Based on this technique, a SO2 DIAL was constructed. SO2 actual measurements and primary studies were also carried out at lidar located site. Measurement errors were analyzed and evaluated. SO2 concentrations measured by SO2 DIAL are comparable with results obtained by SO2 analyzer.
参考文献

[1] . Fredriksson, B. Galle, K. Nystrom et al.. Mobile lidar system for environmental probing[J]. Appl. Opt., 1981, 20(24): 4181-4189.

[2] . Fujii, T. Fukchi, N. Goto et al.. Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109[J]. Appl. Opt., 2001, 40(6): 949-956.

[3] Hu Shunxing, Hu Huanling, Wu Yonghua et al.. L625 differential absorption lidar system for tropospheric ozone measurements [J]. Acta Optica Sinica, 2004, 24(5):597~601
胡顺星,胡欢陵,吴永华 等. L625差分吸收激光雷达探测对流层臭氧[J]. 光学学报, 2004, 24(5):597~601

[4] . Laser remote sensing of sulfur dioxide and ozone with the mobile differential absorption lidar ARGOS[J]. Opt. Eng., 1995, 34(11): 3097-3102.

[5] Shunxing Hu, Huanling Hu, Yinchan Zhang et al.. A new differential absorption lidar for NO2 measurements using Raman-shifted technique [J]. Chin. Opt. Lett., 2003, 1(8):435~437

[6] . J. Klsch, P. Rairoux, J. P. Wolf et al.. Simultaneous NO and NO2 DIAL measurement using BBO crystals[J]. Appl. Opt., 1989, 28(11): 2052-2056.

[7] Tao Zongming, Zhang Yinchao, Cen Gang et al.. Estimating method of detecting minimum pollutant gas concentration by lidar [J]. Acta Optica Sinica, 2004, 24(5):602~604
陶宗明,张寅超,岑岗 等. 激光雷达探测污染气体最小浓度的估算方法[J]. 光学学报, 2004, 24(5):602~604

[8] . M. Schotland. Errors in the lidar measurement of atmospheric gases by differential absorption[J]. J. Appl. Meteo., 1974, 13(1): 71-77.

[9] R. Spurr, W. Thomas. GOME Software Databases for Level 1 to 2 Processing [R]. ER-TN-IFE-GO-0018, Iss./Rev.3/A, Universitt Bremen-Institut für Fernerkundung, July 2002. 14~14

[10] A. C. Vandaele, C. Hermans, P. C. Simon et al.. Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238~1000 nm) at 220 K and 294 K [J]. J. Quantum Spectr. Rad. Transfer., 1998, 59(3-5):171~184

[11] R. Meller, G. K. Moortgat. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225~375 nm [J]. J. Geophys. Res., 2000, 105(D6):7089~7101

[12] J. B. Burkholder, R. K. Talukdar, A. R. Ravishankara et al.. Temperature dependence of the HNO3 UV absorption cross sections [J]. J. Geophys. Res., 1993, 98(D12):22937~22948

[13] . E.Shemansky. CO2 extinction coefficients 1700-3000 , temperature 298 K[J]. J. Chem. Phys., 1972, 56(4): 1582-1588.

[14] . I. Quickenden, J. A. Irvin. The ultraviolet absorption spectrum of liquid water[J]. J. Chem. Phys., 1980, 72(8): 4416-4428.

[15] A. C. Vandaele, P. C. Simon, J. M. Guilmot et al.. SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer [J]. J. Geophys. Res., 1994, 99(D12):25599~25605

胡顺星, 胡欢陵, 张寅超, 刘小勤, 谭琨. 差分吸收激光雷达测量环境SO2[J]. 中国激光, 2004, 31(9): 1121. 胡顺星, 胡欢陵, 张寅超, 刘小勤, 谭琨. Differential Absorption Lidar for Environmental SO2 Measurements[J]. Chinese Journal of Lasers, 2004, 31(9): 1121.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!