中国激光, 2013, 40 (s1): s103003, 网络出版: 2013-12-24  

激光选择熔化成形工艺参数对多孔钛结构的影响及成孔机理

Effect of Process Parameters on Porous Titanium Structure and Mechanism of Porous Formation in Selective Laser Melting
作者单位
1 安徽工业大学材料科学与工程学院, 安徽 马鞍山 243002
2 苏州大学机电学院激光加工中心, 江苏 苏州 215021
3 苏州大学沙钢钢铁学院, 江苏 苏州 215021
摘要
为丰富生物医用多孔钛的制备方法,采用激光选择熔化成形技术制备了多孔钛,着重研究了光斑直径/扫描间距(D/d)值及粉末组成对多孔钛结构的影响、主孔及微孔的形成机理。结果表明:实验粉末为95%Ti+5%TiH2(95%,5%为质量分数)、D/d值为1时,多孔钛孔隙由主孔和微孔构成,微孔将部分主孔连通,形成三维连通结构;激光束选择性地作用于预置粉末,预留的未被辐照区域形成主孔,是否存在主孔由D/d值决定,D/d=2时不产生主孔,D/d=1时产生主孔;激光作用下TiH2分解产生H2,在极快速凝固条件及“活塞效应”的协同作用下,部分H2来不及从钛熔池中逸出而形成微孔,微孔对样品的孔隙率影响不明显,但微孔的存在明显提高了样品的开孔率。
Abstract
In order to enrich the preparation methods of biomedical porous Ti, a technology of selective laser melting is used to prepare porous Ti. The effect of spot diameter/scan space (D/d) and powder on the structure of porous Ti and the formation mechanisms of big holes and small holes are investigated. The results demonstrate that when the experiment is 95%Ti+5%TiH2 (95%, 5% are mass fractions) and D/d=1, porous titanium holes are comprised of big holes and small holes, small holes make part of the big holes connected, to be there-dimensional connectivity structure. Laser beam irradiates preset powder selectively, and the area without irradiated form big holes. Big holes are decided by D/d. Big holes are formed under D/d=1, while under D/d=2, are not. TiH2 is decomposed and produces H2 under the irradiation of laser beam, with the rapid solidification and “Piston Effect”, and some H2 does not have enough time to overflow from weld pool and thus form small holes; the effect of small holes on porosity is not obvious, but the existence of small holes improve the open ratio of the sample dramatically.
参考文献

[1] Oh IH, Nomura N, Masahashi N, et al.. Mechanical properties of porous titanium compacts prepared by powder sintering[J]. Scripta Materialia, 2003, 49(12): 1197-1202.

[2] Tamai N, Myoui A, Tomita T, et al.. Novel hydroxyapatite ceramics with an inter connective porous structure exhibit superior osteoconduction in vivo[J]. J Biomed Mater Res, 2002, 59(1): 110-117.

[3] Simske S J, Ayers R A, Bateman T A. Porous materials for bone engineering[J]. Materials Science Forum, 1997, 250: 151-182.

[4] Oh IH, Nomura N, Hanada S. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering[J]. Materials Transactions, 2002, 43(3): 443-446.

[5] Galante J, Rostoker W, Lueck R. Sintered fibre metal composites as a basis for attachment of implants to bone[J]. J Bone Joint Surg Am, 1971, 53(1): 101-114.

[6] 李虎, 虞奇峰, 张波, 等. 浆料发泡法制备生物活性多孔钛及其性能[J]. 稀有金属材料与工程, 2006, 35(1): 154-157.

    Li Hu, Yu Qifeng, Zhang Bo, et al.. Fabrication and characterization of bioactive porous titanium[J]. Rare Metal Materials and Engineering, 2006, 35(1): 154-157.

[7] 陈存敬, 郭志猛, 贾成厂, 等. 自蔓延高温合成Ti-Ni多孔体合金[J]. 粉末冶金技术, 2003, 21(3): 135-139.

    Chen Cunjing, Guo Zhimeng, Jia Chengchang, et al.. Ti-Ni porous alloys prepared by SHS process[J]. Powder Metallurgy Technology, 2003, 21(3): 135-139.

[8] 吴伟辉, 杨永强, 王迪, 等. 选区激光熔化变密度快速制造工艺研究[J]. 中国激光, 2010, 37(7): 1879-1884.

    Wu Weihui, Yang Yongqiang, Wang Di, et al.. Research on variable density rapid manufacturing process based on selective laser melting technology[J]. Chinese J Lasers, 2010, 37(7): 1879-1884.

[9] 杨永强, 何兴荣, 吴伟辉, 等. 选区激光熔化直接成型个性化骨科手术模板[J]. 中国激光, 2009, 36(9): 2460-2464.

    Yang Yongqiang, He Xingrong, Wu Weihui, et al.. Direct manufacturing of customized orthopedic surgery orienting model by selective laser melting[J]. Chinese J Lasers, 2009, 36(9): 2460-2464.

[10] 付立定. 不锈钢粉末选择性激光熔化直接制造金属零件研究[D]. 武汉: 华中科技大学, 2008. 15-21.

    Fu Liding. Investigation Into Manufacturing Metal Parts Direct From Stainless Steel Powders via Selective Laser Melting[D]. Wuhan: Huazhong University of Science & Technology, 2008. 15-21.

[11] 王志阳. 选区激光熔化制备多孔316L不锈钢和多孔钛的研究[D]. 南京: 南京航空航天大学, 2010. 19-21.

    Wang Zhiyang. Preparation of Porous 316L Stainless Steel and Porous Titanium by Selective Laser Melting[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. 19-21.

[12] Wang Y, Shen Y F, Wang Z Y, et al.. Development of highly porous titanium scaffolds by selective laser melting[J]. Materials Letters, 2010, 64(6): 674-676.

[13] 陈长军, 张敏. 多孔钽的制备方法及装置[P], 中国专利: 201110395892.6. 2012-04-11.

    Chen Changjun, Zhang Min. The Preparation Method and Device of Porous Tantalum[P], China Patent: 201110395892.6. 2012-04-11.

[14] 王燕. 选区激光烧结制备多孔Ni基合金的显微组织及其冶金机理[D]. 南京: 南京航空航天大学, 2011. 34-37.

    Wang Yan. Microstructural Features and Metallurgical Mechanisms of Porous Nickel-Based Alloy Prepared by Selective laser Sintering[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. 34-37.

[15] Fischer P, Romano V, Weber H P, et al.. Sintering of commercially pure titanium powder with a NdYAG laser source[J]. Acta Materialia, 2003, 51(6): 1651-1662.

[16] K Anselme. Osteoblast adhesion on biomaterial[J]. Biomaterials, 2000, 21(7): 667-681.

张超, 陈长军, 王晓南, 张敏, 敬和民. 激光选择熔化成形工艺参数对多孔钛结构的影响及成孔机理[J]. 中国激光, 2013, 40(s1): s103003. Zhang Chao, Chen Changjun, Wang Xiaonan, Zhang Min, Jing Hemin. Effect of Process Parameters on Porous Titanium Structure and Mechanism of Porous Formation in Selective Laser Melting[J]. Chinese Journal of Lasers, 2013, 40(s1): s103003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!