中国激光, 2013, 40 (5): 0502001, 网络出版: 2013-04-28   

增益腔模失配型高温工作垂直腔面发射半导体激光器

Gain-Cavity Mode Detuning Vertical Cavity Surface Emitting Laser Operating at the High Temperature
作者单位
1 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
理论分析了温度对垂直腔面发射半导体激光器(VCSEL)工作性能的影响,利用VCSEL的增益腔模失配理论设计了适用于高温环境下工作的VCSEL外延结构并对该结构进行了外延生长及工艺制备。理论分析表明,采用势垒高度大于0.25 eV的量子阱有源区结构可以缓解高温工作时器件的载流子泄漏问题。设计了室温下增益腔模偏离为11 nm的器件结构。理论分析表明,在320 K时与器件腔模对应的增益谱波长具有最大的光增益,此时器件具有最小的阈值电流。对分布式布拉格反射镜(DBR)的反射率进行了优化以进一步减小器件阈值电流。采用了一种自平坦化的台面工艺结构制作了7、9、13 μm三种不同氧化口径的器件,器件在室温下的阈值电流分别为1.95、2.53、2.9 mA,最大出光功率分别为0.31、1.11、1.04 mW,并且输出功率的高温稳定性较好。随工作温度的升高,器件阈值电流先减小后变大,在320~330 K时器件阈值达到最小值,与理论分析一致。
Abstract
The situation of vertical cavity surface emitting laser (VCSEL) operating at high temperature is analyzed theoretically, and the gain-cavity mode detuning characteristics is employed to design the epitaxy structure of VCSEL. The metal-organic chemical vapor deposition (MOCVD) growth and fabrication process are carried out. The barrier height above 0.25 eV is used in the active region of VCSEL to reduce the carrier leakage at high temperature. The designed structure employs the 11-nm gain-cavity mode deviation. The highest gain appeares at about 320 K, at which the minimum threshold current of VCSEL appears. The reflectivity of distributed Bragg reflector (DBR) within VCSEL is designed to obtain the low threshold current. The self-planar mesa structure is employed to fabricate the VCSEL devices. VCSEL with oxide apertures of 7, 9, 13 μm are fabricated. The threshold currents are 1.95, 2.53, 2.9 mA, respectively, and the corresponding maximum output powers are 0.31, 1.11, 1.04 mW at room temperature. The threshold current decreases first and then increased with the temperature increases, and the minimum value appears at 320~330 K. The measured results consist well with the gain-cavity characteristics of VCSEL.
参考文献

[1] K. Iga. Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE J. Selected Topics in Quantum Electronics, 2000, 6(6): 1201~1213

[2] 张立森, 宁永强, 张星 等. 高功率窄脉冲垂直腔面发射激光器n-DBR反射率的优化[J]. 中国激光, 2012, 39(5): 0502003

    Zhang Lisen, Ning Yongqiang, Zhang Xing et al.. Optimization of n-DBR in high power vertical-cavity surface-emitting laser under a short pulsed operation[J]. Chinese J. Lasers, 2012, 39(5): 0502003

[3] 贾宝辉, 刘超, 付莉 等. 激光心肌血运重建联合血管内皮祖细胞移植治疗缺血性心脏病[J]. 中国激光, 2010, 37(6): 1654~1658

    Jia Baohui, Liu Chao, Fu Li et al.. Effect of the combined use of transmyocardial laser revascularization and implantation of endothelial progenitor cells on canine ischemic heart[J]. Chinese J. Lasers, 2010, 37(6): 1654~1658

[4] R. Rossbach, T. Ballmann, R. Butendeich et al.. Red VCSEL for high-temperature applications[J]. J. Crystal Growth. 2004, 272(1-4): 549~554

[5] I. A. Derebezov, V. A. Haisler, A. K. Bakarov et al.. Single-mode vertical-cavity surface-emitting lasers for atomic clocks[J]. Optoelectronics, Instrumentation and Data Processing, 2009, 45(4): 361~366

[6] A. Al-Samaneh, M. B. Sanayeh, S. Renz et al.. Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications[J]. Photonics Technology Letters, 2011, 23(15): 1049~1051

[7] E. Soderberg, P. Modh, J. S. Gustavsson et al.. High speed, high temperature operation of 1.28 μm singlemode InGaAs VCSELs[J]. Electronics Letters, 2006, 42(17): 978~979

[8] K. Johnson, M. Hibbs-Brenner, W. Hogan et al.. Record high temperature, high output power red VCSELs[C]. SPIE, 2011, 7952: 795208

[9] S. Mogg, N. Chitica, U. Christiansson et al.. Temperature sensitivity of the threshold current of long-wavelength InGaAs-GaAs VCSELs with large gain-cavity detuning[J]. J. Quantum Electronics, 2004, 40(5): 453~461

[10] J. Wu, W. Xiao, Y. M. Lu. Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers[J]. IET Optoelectron., 2007, 1(5): 206~210

[11] 史晶晶,田振华, 秦莉 等. 850 nm大功率垂直腔面发射激光器[J]. 光电子·激光, 2010, 21(10): 1445~1448

    Shi Jingjing, Tian Zhenhua, Qin Li et al.. 850 nm high power vertical-cavity surface-emitting lasers[J]. J. Optoelectronics and laser, 2010, 21(10): 1445~1448

[12] 杜宝勋. 半导体激光器原理[M]. 第2版北京: 兵器工业出版社, 2004. 137~174

    Du Baoxun. Semiconductor Laser Theory: second edition[M]. 2nd edition Beijing: The Publish of Enginery Industry, 2004. 137~174

[13] P. M. Enders. Enhancement and spectral shift of optical gain in semiconductors from non-Markovian intraband relaxation[J]. J. Quantum Eelctronics, 1997, 33(4): 580~588

[14] Y. M. Deng. Gallium Arsenide Based Semiconductor Laser Design and Growth by Metal-Organic Chemical Vapor Deposition[D]. California: The Graduate School University of Southern California, 2006. 9~12

[15] S. F. Yu. Analysis and Design of Vertical Cavity Surface Emitting Lasers[M]. Wiley Interscience publication, 2003. 75~77

[16] 王小东, 吴旭明, 王青 等. 具有非均匀渐变界面DBR的光学特性分析[J]. 物理学报, 2006, 55(10): 4983~4986

    Wang Xiaodong, Wu Xuming, Wang Qing et al.. Optical characteristics of DBR with inhomogeneous graded interfaces[J]. Acta Physia Sinica, 2006, 55(10): 4983~4986

[17] P. P. Baveja, B. Kgel, P. Westbergh et al.. Impact of device parameters on thermal performance of high-speed oxide-confined 850 nm VCSELs[J]. J. Quantum Electronics, 2012, 48(1): 17~26

[18] Y. A. Chang, J. R. Chen, H. C. Kuo et al.. Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850 nm vertical-cavity surface-emitting lasers[J]. J. Lightwave Technology, 2006, 24(1): 536~542

[19] M. Hong, J. P. Mannaerts. A simple way to reduce series resistance in p-doped semiconductor distributed Bragg reflectors[J]. J. Crystal Growth, 1991, 111(1): 1071~1075

[20] T. Li, Y. Q. Ning, E. J. Hao et al.. Design and optimization of DBR in 980 nm bottom-emitting VCSEL [J]. Science in China Series F: Information Sciences, 2009, 52(7): 1266~1271

张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军. 增益腔模失配型高温工作垂直腔面发射半导体激光器[J]. 中国激光, 2013, 40(5): 0502001. Zhang Jianwei, Ning Yongqiang, Zhang Xing, Zeng Yugang, Zhang Jian, Liu Yun, Qin Li, Wang Lijun. Gain-Cavity Mode Detuning Vertical Cavity Surface Emitting Laser Operating at the High Temperature[J]. Chinese Journal of Lasers, 2013, 40(5): 0502001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!