光电子技术, 2016, 36 (2): 88, 网络出版: 2016-12-07  

具有径向补偿永磁系统的高功率法拉第隔离器

High-power Faraday Isolator with Radial Compensatory Permanent Magnet System
作者单位
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
基于磁场设计原理及法拉第隔离器对高功率的需求, 提出了一种具有径向补偿特性的永磁系统(RCPMS), 分析了其磁场分布不均匀度对激光偏振态旋转角度(LPR)的影响, 以及LPR的变化对法拉第隔离器性能的影响。研究结果表明, 在RCPMS中, LPR的变化量减小至未补偿情况下的20%, FI的退偏度降低了10倍, 这对于FI应用在高功率激光系统具有重要意义。
Abstract
A permanent magnet system with radial compensation characteristic was proposed based on the principle of designing magnetic field and the demand of high laser power for Faraday isolator. The influence of magnetic field distribution’s inhomogeneity on the laser polarization rotation angle (LPR) and the variation of LPR on the performance of Faraday isolator (FI) were analyzed. The research indicates that, the variation of LPR decreases 80% and the depolarization of FI reduces 10 times in the PMS with radial compensation (RCPMS), which is significant for FI application in high power laser systems.
参考文献

[1] 陈子伦. 晶体中的热透镜效应数值模拟[D]. 长沙: 国防科学技术大学, 2004.

[2] Snetkov IL, Palashov OV. Compensation of thermal effects in Faraday isolator for high average power lasers[J].Applied Physics B-Lasers and Optics, 2012, 109(2):239-247.

[3] Rothhardt C, Rekas M, Kalkowski G, et al. New approach to fabrication of a Faraday isolator for high power laser applications[J]. Proc Spie, 2012, 8237:82373Z.

[4] Efim Khazanov NFA, Anatoly Mal’shakov, Oleg Palashov, et al. Compensation of thermally induced modal distortions in Faraday Isolators[J]. IEEE Journal of Quantum Electronics, 2004, 40(10):1500.

[5] Snetkov Ilya L, Voitorich A V, Palashov O V, et al. Review of Faraday Isolators for Kilowatt Average Power Lasers[J]. IEEE Journal of Quantum Electronics, 2014, 50(6):434-443.

[6] Dmitry S. Zheleznov A V S, Oleg V. Palashov, and Efim A. Khazanov.Cryogenic Faraday isolator with a disk-shaped magneto-optical element[J].Journal of the Optical Society of America B, 2012, 29(4):786.

[7] Zheleznov D SAVS, , Palashov O V , Khazanov E A.Cryogenic Faraday Isolator for Multikilowatt Average Laser[J].Opt Soc Am, 2012, 29:786.

[8] Palashov O V, Ievlev I V, Perevezentsev E A, et al. Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 - 200 K using Peltier elements[J]. Quantum Electronics, 2011, 41(9):858-861.

[9] Trénec G, Volondat W, Cugat O, et al. Permanent magnets for Faraday rotators inspired by the design of the magic sphere[J]. Applied Optics, 2011, 50(24):4788.

[10] Mironov E A, Voitovich A V, Palashov O V. Nonorthogonally magnetised permanent-magnet Faraday isolators[J]. Quantum Electronics, 2011, 41(1):71.

[11] Mironov E A, Snetkov I L, Voitovich A V, et al. Permanent-magnet Faraday isolator with the field intensity of 25 kOe[J]. Quantum Electronics, 2013, 43(8):740-743.

[12] Barnes N P, Petway L B. Variation of the Verdet constant with temperature of terbium gallium garnet[J]. Journal of the Optical Society of America B, 1992, 9(10):1912.

[13] Khazanov E A, Kulagin O V, Yoshida S, et al. Investigation of self-induced depolarization of laser radiation in terbium gallium garnet[J]. IEEE Journal of Quantum Electronics, 1999, 35(8):1116-1122.

[14] Mironov E A A V V, Starobor A V , and Palashov O V . Compensation of polarization distortions in Faraday isolators by means of magnetic field inhomogeneity[J]. Applied Optics, 2014, 53(16):3486.

[15] 胡姝玲, 赵东伟, 王欢欢等.高功率光隔离器永磁系统的理论研究与优化. 强激光与粒子束[J], 2015, (1):18-23.

[16] Starobor A V, Zheleznov D S, Palashov O V, et al. Magnetoactive media for cryogenic Faraday isolators[J]. Journal of the Optical Society of America B, 2011, 28(6):1409-1415.

胡姝玲, 王欢欢, 李晓佩, 肖泽宇, 李军. 具有径向补偿永磁系统的高功率法拉第隔离器[J]. 光电子技术, 2016, 36(2): 88. HU Shuling, WANG Huanhuan, LI Xiaopei, XIAO Zeyu, LI Jun. High-power Faraday Isolator with Radial Compensatory Permanent Magnet System[J]. Optoelectronic Technology, 2016, 36(2): 88.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!