光学学报, 2006, 26 (8): 1260, 网络出版: 2007-03-15   

高灵敏度离轴积分腔输出光谱技术

High-Sensitivity off-Axis Integrated Cavity Output Spectroscopy
作者单位
中国科学院安徽光学精密机械研究所, 合肥 230031
摘要
利用离轴积分腔输出光谱技术,采用同时扫描激光和谐振腔腔长的方法,使用分布反馈布拉格二极管激光器探测了1.573 μm附近CO2的吸收光谱,得到很好的信噪比和灵敏度,探测灵敏度达到4×10-8 cm-1(信噪比为2,1 s积分时间)。用非线性最小二乘拟合吸收谱线方法对积分腔输出光谱已经不再适用,会造成自加宽系数变宽为实际自加宽系数的2.39倍左右,对空气加宽系数测量影响较小。为了得到正确的谱线线宽参量,应该对吸收系数进行拟合,该结论从理论和实验上得到了证明。
Abstract
Using a distributed feed back (DFB) tunable diode laser as the injection light source, absorption spectrum around 1.573 μm with high signal-to-noise ratio (SNR) and sensitivity is obtained by using off-axis integrated cavity output spectroscopy and scanning the laser and cavity simultaneously. The typical sensitivity is 4×10-8 cm-1 (SNR=2,1s integrated time). It is not valid to fit the integrated cavity output spectrum with the nonlinear least square method, and it will make the self-broadening coefficient broadened as about 2.39 times of the real value. The air-broaden coefficient approaches to the real one. Absorption coefficient fit is necessary to obtain the correct parametersof spectral line width. Theoretical analysis and experiment demonstration prove the conclusion.
参考文献

[1] . O′Keefe, D. A. G. Deacon. Cavity ring-down optical spectrometer for absorption measurement using pulsed laser sources[J]. Rev. Sci. Instrum., 1988, 59(12): 2544-2551.

[2] . L. Fawcett, A. M. Parkes, D. E. Shallcross et al.. Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm[J]. Phys. Chem., 2002, 4(24): 5960-5965.

[3] . Cheskis, I. Derzy, V. A. Lozovsky et al.. Cavity ring-down spectroscopy of OH radicals in low pressure flame[J]. Appl. Phys. B, 1998, 66(3): 377-381.

[4] . Macko, D. Romanini, S. N. Mikhailenko et al.. High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5 μm atmospheric window[J]. J. Molecular Spectroscopy, 2004, 227(1): 90-108.

[5] . Berden, R. Peeters, G. Meijer. Cavity ring-down spectroscopy: Experimental schemes and application[J]. Int. Rev. Phys. Chem., 2000, 19(4): 565-607.

[6] . J. Scherer, J. B. Paul, A. O′Keefe et al.. Cavity ring down laser absorption spectroscopy: History, development and application to pulsed molecular beams[J]. Chem. Rev., 1997, 97(1): 25-51.

[7] A. O′Keefe. Integrated cavity output analysis of ultra-weak absorption[J]. Chem. Phys. Lett., 1998, 293(5~6): 331~336

[8] . Engeln, G. Berden, R. Peeters et al.. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Rev. Sci. Instrum., 1998, 69(11): 3763-3769.

[9] A. O′Keefe, J. J. Scherer, J. B. Paul. CW integrated cavity output spectroscopy[J]. Chem. Phys. Lett., 1999, 307(5~6): 343~349

[10] D. S. Baer, J. B. Paul, M. Gupta et al.. Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy[J]. Appl. Phys. B, 2002, 75(2~3): 261~265

[11] . B. Paul,L. Lapson, J. G. Anderson. Ultra sensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Appl. Opt., 2001, 40(27): 4904-4910.

[12] G. S. Engel, E. J. Moyer, F. N. Keutsch et al.. Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change[R]. http:∥esto.nasa.gov/conference/estc2003/papers/B1P11(Engel).pdf

[13] S. E. Fiedler, A. Hese, A. A. Ruth. Incoherent broad band cavity-enhanced absorption spectroscopy[J]. Chem. Phys. Lett., 2003, 371(3~4): 284~294

[14] Shaocheng Li, Qingxu Yu, Maarten van Herpen et al.. Cavity enhanced spectroscopy for N2O detection at 2.86 μm using a continuous tunable color center laser[J]. Chin. Opt. Lett., 2003, 1(6): 361~363

[15] Wu Shenghai, Yang Ming, Yang Xiaohua et al.. Magnetic rotation cavity enhanced spectroscopy[J]. Acta Optica Sinica, 2005, 25(2): 265~269 (in Chinese)
吴升海,杨铭,杨晓华 等. 磁旋转腔增强光谱技术[J]. 光学学报, 2005, 25(2): 265~269

[16] Chen Yanping, Jiang Yanyi, Bi Zhiyi et al.. Modulation transfer spectroscopy of I2 enhanced by an external optical cavity[J]. Chin. J. Lasers, 2005, 32(5): 655~658 (in Chinese)
陈艳萍, 蒋燕义, 毕志毅 等. 光学谐振腔增强碘分子调制转移光谱[J]. 中国激光, 2005, 32(5): 655~658

[17] Gao Xiaoming, Huang wei, Li Ziyao et al.. Sensitive detection of CO2 molecule using near infrared diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2003, 23(5): 609~611 (in Chinese)
高晓明,黄伟,李子尧 等. CO2分子的近红外二极管激光吸收光谱灵敏探测[J]. 光学学报, 2003, 23(5): 609~611

[18] Wu Chengjiu, Wei Heli, Yuan Yiqian et al.. The high-resolution absorption spectra of atmosphere measured by laser long-path absorption spectroscopy[J]. Acta Optica Sinica, 2002, 22(2): 238~242 (in Chinese)
邬承就,魏合理,袁怿谦 等. 激光长程吸收光谱法测量高分辨率大气吸收光谱[J]. 光学学报, 2002, 22(2): 238~242

[19] Gu Huaimin, Alan Zhang. Multi-pass absorption FM spectroscopy[J]. Acta Photonic Sinica, 2003, 32(8): 1013~1016 (in Chinese)
谷怀民,Alan Zhang. 多光程吸收的频率调制光谱 J]. 光子学报, 2003, 32(8): 1013~1016

赵卫雄, 高晓明, 张为俊, 黄腾. 高灵敏度离轴积分腔输出光谱技术[J]. 光学学报, 2006, 26(8): 1260. 赵卫雄, 高晓明, 张为俊, 黄腾. High-Sensitivity off-Axis Integrated Cavity Output Spectroscopy[J]. Acta Optica Sinica, 2006, 26(8): 1260.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!