Photonic Sensors, 2019, 9 (4): 356, Published Online: Dec. 5, 2019  

All-Organic Waveguide Sensor for Volatile Solvent Sensing

Author Affiliations
Institute of Solid State Physics, University of Latvia, Riga LV-1083, Latvia
Copy Citation Text

Edgars NITISS, Arturs BUNDULIS, Andrejs TOKMAKOVS, Janis BUSENBERGS, Martins RUTKIS. All-Organic Waveguide Sensor for Volatile Solvent Sensing[J]. Photonic Sensors, 2019, 9(4): 356.

References

[1] S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review,” Journal of Science: Advanced Materials and Devices, 2016, 1(4): 431-453.

[2] O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Analytical Chemistry, 2006, 78(12): 3859-3874.

[3] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor,” Journal of Modern Optics, 2018, 65(2): 174-178.

[4] R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, et al., “III-V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2-4 μm wavelength range,” Sensors, 2017, 17(8): 1788-1-1788-21.

[5] M. A. Butt, S. A. Degtyarev, S. N. Khonina, and N. L. Kazanskiy, “An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength,” Journal of Modern Optics, 2017, 64(18): 1892-1897.

[6] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 μm wavelength for evanescent field gas absorption sensor,” Optik, 2018, 168: 692-697.

[7] A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. Le Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photonics, 2016, 3(11): 2141-2149.

[8] J. Milvich, D. Kohler, W. Freude, and C. Koos, “Surface sensing with integrated optical waveguides: a design guideline,” Optics Express, 2018, 26(16), 19885-19906.

[9] M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Advances in Optics and Photonics, 2015, 7(2): 168-240.

[10] A. R. Ali and C. M. Elias, “Ultra-sensitive optical resonator for organic solvents detection based on whispering gallery modes,” Chemosensors, 2017, 5(2): 19-1-19-10.

[11] L. L. Páez, K. S. Carracedo, M. H. Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Optics Express, 2017, 25(2): 1165-1172.

[12] O. Hugon, P. Benech, and H. Gagnaire, “Surface plasmon chemical/biological sensor in integrated optics,” Sensors and Actuators B: Chemical, 1998, 51(1): 316-320.

[13] Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Optics Letters, 2011, 36(10): 1752-1754.

[14] P. M. P. Gouvêa, P. Rugeland, M. S. P. Gomes, and W. Margulis, “Component and setup for insertion of gases in a hollow-core optical fiber sensor,” SPIE, 2015, 9634: 96343D-1-96343D-4.

[15] S. Dante, D. Duval, B. Sepúlveda, A. B. G. Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Optics Express, 2012, 20(7): 7195-7205.

[16] K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, P. Oikonomou, et al., “All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor,” Optics Express, 2014, 22(22): 26803-26813.

[17] P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Optics Express, 2008, 16(22): 18164-18172.

[18] N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sensors Actuators B: Chemical, 1992, 7(1): 672-676.

[19] P. J. Skrdla, S. S. Saavedra, N. R. Armstrong, S. B. Mendes, and N. Peyghambarian, “Sol-Gel-based, planar waveguide sensor for water vapor,” Analytical Chemistry, 1999, 71(7): 1332-1337.

[20] L. Yang, S. S. Saavedra, and N. R. Armstrong, “Sol-Gel-based, planar waveguide sensor for gaseous iodine,” Analytical Chemistry, 1996, 86(11): 1834-1841.

[21] Z. Zhang, D. F. Lu, and Z. M. Qi, “Application of porous TiO2 thin films as wavelength-interrogated waveguide resonance sensors for bio/chemical detection,” The Journal of Physical Chemistry C, 2012, 116(6): 3342-3348.

[22] R. Amberkar, Z. Gao, J. Park, D. B. Henthorn, and C. S. Kim, “Process development for waveguide chemical sensors with integrated polymeric sensitive layers,” SPIE, 2008, 6886: 68860U-1-68860U-8.

[23] F. L. Alves, I. M. Raimundo, I. F. Gimenez, and O. L. Alves, “An organopalladium-PVC membrane for sulphur dioxide optical sensing,” Sensors Actuators B Chemical, 2005, 107(1): 47-52.

[24] A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Applied Optics, 2004, 43(21): 4127-4132.

[25] N. Zhao, G. Qian, X. C. Fu, L. J. Zhang, W. Hu, R. Z. Li, et al., “Integrated optical displacement sensor based on asymmetric Mach-Zehnder interferometer chip,” Optical Engineering, 2017, 56(2): 027109-1-027109-6.

[26] Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices,” Advanced Materials, 2004, 16(1): 44-48.

[27] M. Crawford, “Wearable technology is booming, powered by photonics,” SPIE, 2016, DOI: 10.1117/2.2201606.01.

[28] E. Nitiss, J. Busenbergs, A. Tokmakovs, and M. Rutkis, “Preparation of an organic waveguide electro-optic modulator operating in the visible spectral range,” Sensors Transducers, 2018, 225(9): 19-24.

[29] V. Ballenger, J. K. Commercon, J. Verdu, and P. Tordjeman, “Interactions of solvents with poly (methyl methacrylate),” Polymer, 1997, 38(16): 4175-4184.

[30] M. Matsuguchi, Y. Sadaoka, Y. Sakai, T. Kuroiwa, and A. Ito, “A capacitive-type humidity sensor using cross-linked poly (methyl methacrylate) thin films,” Journal of The Electrochemical Society, 1991, 138(6): 1862-1865.

[31] E. Nitiss, A. Tokmakovs, K. Pudzs, J. Busenbergs, and M. Rutkis, “All-organic electro-optic waveguide modulator comprising SU-8 and nonlinear optical polymer,” Optics Express, 2017, 25(25): 31036-31044.

[32] K. Traskovskis, I. Mihailovs, A. Tokmakovs, V. Kokars, and M. Rutkis, “An improved molecular design of obtaining NLO active molecular glasses using triphenyl moieties as amorphous phase formation enhancers,” SPIE, 2012, 8434: 84341P-1-84341P-8.

[33] E. Nitiss, “Evaluation of performance of a hybrid electro-optic directional coupler and a Mach-Zehnder switch,” Journal of Nanophotonics, 2017, 11(1): 016013-1-016013-12.

[34] Y. Li, T. Taffner, M. Bischoff, and B. Niemeyer, “Test gas generation from pure liquids: an application-oriented overview of methods in a nutshell,” International Journal of Chemical Engineering, 2012, 2012: 417029-1-417029-6.

[35] D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 μm,” SPIE, 2005, 6038: 603821-1-603821-8.

[36] J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, et al., “Temperature-independent silicon subwavelength grating waveguides,” Optics Letters, 2011, 36(11): 2110-2112.

[37] Y. Sun, Y. Cao, Y. Yi, L. Tian, Y. Zheng, J. Zheng, et al., “A low-power consumption MZI thermal optical switch with a graphene-assisted heating layer and air trench,” RSC Advances, 2017, 7(63): 39922-39927.

[38] A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delage, et al., “Compact and low power thermo-optic switch using folded silicon waveguides,” Optics Express, 2009, 17(13): 10457-10465.

[39] D. Pérez, J. Fernández, R. Banos, J. D. Doménech, A. M. Sánchez, J. M. Cirera, et al., “Thermal tuners on a silicon nitride platform,” ArXiv, 2016, pp. 1-13.

[40] B. X. Jing, J. Zhao, Y. Wang, X. Yi, and H. L. Duan, “Water-swelling-induced morphological instability of a supported polymethyl methacrylate thin film,” Langmuir, 2010, 26(11): 7651-7655.

[41] K. Tanaka, Y. Fujii, H. Atarashi, K. I. Akabori, M. Hino, and T. Nagamura, “Nonsolvents cause swelling at the interface with poly (methyl methacrylate) films,” Langmuir, 2007, 24(1): 296-301.

[42] G. Geertz, J. Wieser, I. Alig, and G. Heinrich, “Modeling of moisture-induced stress in PMMA: a simple approach to consider sorption behavior in FEM,” Polymer Engineering and Science, 2017, 57(1): 3-12.

[43] J. E. Saunders, H. Chen, C. Brauer, M. G. Clayton, W. J. Chen, J. A. Barnes, et al., “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter, 2015, 11(45): 8746-8757.

[44] K. Süvegh, M. Klapper, A. Domján, S. Mullins, W. Wunderlich, and A. Vértes, “Free volume distribution in monodisperse and polydisperse poly (methyl methacrylate) samples,” Macromolecules, 1999, 32(2): 1147-1151.

[45] J. S. Papanu, D. W. Hess, D. S. Soane (Soong), and A. T. Bell, “Swelling of poly (methyl methacrylate) thin films in low molecular weight alcohols,” Journal of Applied Polymer Science, 1990, 39(4): 803-823.

[46] J. M. Zielinski and J. L. Duda, “Predicting polymer/solvent diffusion coefficients using free-volume theory,” AIChE Journal, 1992, 38(3): 405-415.

[47] S. Das and V. Jayaraman, “SnO2: a comprehensive review on structures and gas sensors,” Progress in Materials Science, 2014, 66: 112-255.

Edgars NITISS, Arturs BUNDULIS, Andrejs TOKMAKOVS, Janis BUSENBERGS, Martins RUTKIS. All-Organic Waveguide Sensor for Volatile Solvent Sensing[J]. Photonic Sensors, 2019, 9(4): 356.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!