Photonic Sensors, 2019, 9 (4): 356, Published Online: Dec. 5, 2019  

All-Organic Waveguide Sensor for Volatile Solvent Sensing

Author Affiliations
Institute of Solid State Physics, University of Latvia, Riga LV-1083, Latvia
Abstract
An all-organic Mach-Zehnder waveguide device for volatile solvent sensing is presented. Optical waveguide devices offer a great potential for various applications in sensing and communications due to multiple advantageous properties such as immunity to electromagnetic interference, high efficiency, and low cost and size. One of the most promising areas for applications of photonic systems would be real-time monitoring of various hazardous organic vapor concentrations harmful to human being. The optical waveguide volatile solvent sensor presented here comprises a novel organic material applied as a cladding on an SU-8 waveguide core and can be used for sensing of different vapors such as isopropanol, acetone, and water. It is shown that the reason for the chemical sensing in device is the absorption of vapor into the waveguide cladding which in turn changes the waveguide effective refractive index. The presented waveguide device has small footprint and high sensitivity of the mentioned solvent vapor, particularly that of water. The preparation steps of the device as well as the sensing characteristics are presented and discussed.
References

[1] S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review,” Journal of Science: Advanced Materials and Devices, 2016, 1(4): 431-453.

[2] O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Analytical Chemistry, 2006, 78(12): 3859-3874.

[3] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor,” Journal of Modern Optics, 2018, 65(2): 174-178.

[4] R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, et al., “III-V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2-4 μm wavelength range,” Sensors, 2017, 17(8): 1788-1-1788-21.

[5] M. A. Butt, S. A. Degtyarev, S. N. Khonina, and N. L. Kazanskiy, “An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength,” Journal of Modern Optics, 2017, 64(18): 1892-1897.

[6] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 μm wavelength for evanescent field gas absorption sensor,” Optik, 2018, 168: 692-697.

[7] A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. Le Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photonics, 2016, 3(11): 2141-2149.

[8] J. Milvich, D. Kohler, W. Freude, and C. Koos, “Surface sensing with integrated optical waveguides: a design guideline,” Optics Express, 2018, 26(16), 19885-19906.

[9] M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Advances in Optics and Photonics, 2015, 7(2): 168-240.

[10] A. R. Ali and C. M. Elias, “Ultra-sensitive optical resonator for organic solvents detection based on whispering gallery modes,” Chemosensors, 2017, 5(2): 19-1-19-10.

[11] L. L. Páez, K. S. Carracedo, M. H. Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Optics Express, 2017, 25(2): 1165-1172.

[12] O. Hugon, P. Benech, and H. Gagnaire, “Surface plasmon chemical/biological sensor in integrated optics,” Sensors and Actuators B: Chemical, 1998, 51(1): 316-320.

[13] Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Optics Letters, 2011, 36(10): 1752-1754.

[14] P. M. P. Gouvêa, P. Rugeland, M. S. P. Gomes, and W. Margulis, “Component and setup for insertion of gases in a hollow-core optical fiber sensor,” SPIE, 2015, 9634: 96343D-1-96343D-4.

[15] S. Dante, D. Duval, B. Sepúlveda, A. B. G. Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Optics Express, 2012, 20(7): 7195-7205.

[16] K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, P. Oikonomou, et al., “All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor,” Optics Express, 2014, 22(22): 26803-26813.

[17] P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Optics Express, 2008, 16(22): 18164-18172.

[18] N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sensors Actuators B: Chemical, 1992, 7(1): 672-676.

[19] P. J. Skrdla, S. S. Saavedra, N. R. Armstrong, S. B. Mendes, and N. Peyghambarian, “Sol-Gel-based, planar waveguide sensor for water vapor,” Analytical Chemistry, 1999, 71(7): 1332-1337.

[20] L. Yang, S. S. Saavedra, and N. R. Armstrong, “Sol-Gel-based, planar waveguide sensor for gaseous iodine,” Analytical Chemistry, 1996, 86(11): 1834-1841.

[21] Z. Zhang, D. F. Lu, and Z. M. Qi, “Application of porous TiO2 thin films as wavelength-interrogated waveguide resonance sensors for bio/chemical detection,” The Journal of Physical Chemistry C, 2012, 116(6): 3342-3348.

[22] R. Amberkar, Z. Gao, J. Park, D. B. Henthorn, and C. S. Kim, “Process development for waveguide chemical sensors with integrated polymeric sensitive layers,” SPIE, 2008, 6886: 68860U-1-68860U-8.

[23] F. L. Alves, I. M. Raimundo, I. F. Gimenez, and O. L. Alves, “An organopalladium-PVC membrane for sulphur dioxide optical sensing,” Sensors Actuators B Chemical, 2005, 107(1): 47-52.

[24] A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Applied Optics, 2004, 43(21): 4127-4132.

[25] N. Zhao, G. Qian, X. C. Fu, L. J. Zhang, W. Hu, R. Z. Li, et al., “Integrated optical displacement sensor based on asymmetric Mach-Zehnder interferometer chip,” Optical Engineering, 2017, 56(2): 027109-1-027109-6.

[26] Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices,” Advanced Materials, 2004, 16(1): 44-48.

[27] M. Crawford, “Wearable technology is booming, powered by photonics,” SPIE, 2016, DOI: 10.1117/2.2201606.01.

[28] E. Nitiss, J. Busenbergs, A. Tokmakovs, and M. Rutkis, “Preparation of an organic waveguide electro-optic modulator operating in the visible spectral range,” Sensors Transducers, 2018, 225(9): 19-24.

[29] V. Ballenger, J. K. Commercon, J. Verdu, and P. Tordjeman, “Interactions of solvents with poly (methyl methacrylate),” Polymer, 1997, 38(16): 4175-4184.

[30] M. Matsuguchi, Y. Sadaoka, Y. Sakai, T. Kuroiwa, and A. Ito, “A capacitive-type humidity sensor using cross-linked poly (methyl methacrylate) thin films,” Journal of The Electrochemical Society, 1991, 138(6): 1862-1865.

[31] E. Nitiss, A. Tokmakovs, K. Pudzs, J. Busenbergs, and M. Rutkis, “All-organic electro-optic waveguide modulator comprising SU-8 and nonlinear optical polymer,” Optics Express, 2017, 25(25): 31036-31044.

[32] K. Traskovskis, I. Mihailovs, A. Tokmakovs, V. Kokars, and M. Rutkis, “An improved molecular design of obtaining NLO active molecular glasses using triphenyl moieties as amorphous phase formation enhancers,” SPIE, 2012, 8434: 84341P-1-84341P-8.

[33] E. Nitiss, “Evaluation of performance of a hybrid electro-optic directional coupler and a Mach-Zehnder switch,” Journal of Nanophotonics, 2017, 11(1): 016013-1-016013-12.

[34] Y. Li, T. Taffner, M. Bischoff, and B. Niemeyer, “Test gas generation from pure liquids: an application-oriented overview of methods in a nutshell,” International Journal of Chemical Engineering, 2012, 2012: 417029-1-417029-6.

[35] D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 μm,” SPIE, 2005, 6038: 603821-1-603821-8.

[36] J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, et al., “Temperature-independent silicon subwavelength grating waveguides,” Optics Letters, 2011, 36(11): 2110-2112.

[37] Y. Sun, Y. Cao, Y. Yi, L. Tian, Y. Zheng, J. Zheng, et al., “A low-power consumption MZI thermal optical switch with a graphene-assisted heating layer and air trench,” RSC Advances, 2017, 7(63): 39922-39927.

[38] A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delage, et al., “Compact and low power thermo-optic switch using folded silicon waveguides,” Optics Express, 2009, 17(13): 10457-10465.

[39] D. Pérez, J. Fernández, R. Banos, J. D. Doménech, A. M. Sánchez, J. M. Cirera, et al., “Thermal tuners on a silicon nitride platform,” ArXiv, 2016, pp. 1-13.

[40] B. X. Jing, J. Zhao, Y. Wang, X. Yi, and H. L. Duan, “Water-swelling-induced morphological instability of a supported polymethyl methacrylate thin film,” Langmuir, 2010, 26(11): 7651-7655.

[41] K. Tanaka, Y. Fujii, H. Atarashi, K. I. Akabori, M. Hino, and T. Nagamura, “Nonsolvents cause swelling at the interface with poly (methyl methacrylate) films,” Langmuir, 2007, 24(1): 296-301.

[42] G. Geertz, J. Wieser, I. Alig, and G. Heinrich, “Modeling of moisture-induced stress in PMMA: a simple approach to consider sorption behavior in FEM,” Polymer Engineering and Science, 2017, 57(1): 3-12.

[43] J. E. Saunders, H. Chen, C. Brauer, M. G. Clayton, W. J. Chen, J. A. Barnes, et al., “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter, 2015, 11(45): 8746-8757.

[44] K. Süvegh, M. Klapper, A. Domján, S. Mullins, W. Wunderlich, and A. Vértes, “Free volume distribution in monodisperse and polydisperse poly (methyl methacrylate) samples,” Macromolecules, 1999, 32(2): 1147-1151.

[45] J. S. Papanu, D. W. Hess, D. S. Soane (Soong), and A. T. Bell, “Swelling of poly (methyl methacrylate) thin films in low molecular weight alcohols,” Journal of Applied Polymer Science, 1990, 39(4): 803-823.

[46] J. M. Zielinski and J. L. Duda, “Predicting polymer/solvent diffusion coefficients using free-volume theory,” AIChE Journal, 1992, 38(3): 405-415.

[47] S. Das and V. Jayaraman, “SnO2: a comprehensive review on structures and gas sensors,” Progress in Materials Science, 2014, 66: 112-255.

Edgars NITISS, Arturs BUNDULIS, Andrejs TOKMAKOVS, Janis BUSENBERGS, Martins RUTKIS. All-Organic Waveguide Sensor for Volatile Solvent Sensing[J]. Photonic Sensors, 2019, 9(4): 356.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!