光子学报, 2015, 44 (4): 0419001, 网络出版: 2015-04-28   

海胆状金纳米粒子表面形貌对表面增强喇曼散射特性的影响

SERS Characteristics of Sea Urchin-like Gold Nanoparticles Dependent on Their Surface Morphology
作者单位
宁波大学 理学院 微电子科学与工程系, 浙江 宁波 315211
摘要
采用改进的一步还原法合成了多种海胆状金纳米粒子, 并对它们的表面增强喇曼散射特性与其表面形貌的关系进行了实验研究.实验表明, 合成的海胆状金纳米粒子的直径及表面的尖刺大小可以通过改变加入到氯金酸溶液中的硝酸银的量来调节.当加入到氯金酸溶液中的硝酸银为1μL时, 合成的海胆状金纳米粒子的直径最小而尖刺最长.同时测量的紫外-可见-近红外吸收光谱表明, 海胆状金纳米粒子的局域表面等离子体共振带会随着加入到氯金酸溶液中的硝酸银量的增加而变宽.此外, 通过喇曼标记分子对巯基苯甲酸(4MBA)的喇曼光谱测量发现, 较小直径和较长尖刺的海胆状金纳米粒子具有更强的表面增强喇曼散射活性.
Abstract
A modified one-step reduction method was reported to synthesize the Sea Urchin-like Gold Nanoparticles (SU-GNPs), and the Surface-Enhanced Raman Scattering (SERS) characteristics of the SU-GNPs dependent on their surface morphology were experimentally studied. Experimental results shown that, the diameters and the thorn sizes of the SU-GNPs can be changed by adjusting the amount of silver nitrate aqueous solution added into hydrogen tetrachloroaurate trihydrate aqueous solution. When the added amount of silver nitrate was 1 μL, the as-prepared SU-GNPs had the longest thorns and the smallest diameter. And the measured UV-vis-NIR spectra exhibited that the localized surface plasmon resonance bands of the SU-GNPs were broaden with increasing of the added amount of silver nitrate. In addition, the effect of surface morphology on the SERS of SU-GNPs was investigated by using 4-mercaptobenzoic acid as a Raman reporter molecule. The results demonstrated that the SU-GNPs with smaller diameters and longer thorns gave rise to a stronger SERS enhancement.
参考文献

[1] MICHAELS A M, NIRMAL M, BRUS L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals[J]. Journal of the American Chemical Society, 1999, 121(43): 9932-9939.

[2] ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453.

[3] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

[4] SMYTHE E J, DICKEY M D, BAO J M, et al. Optical antenna arrays on a fiber facet for in situ Surface-Enhanced Raman scattering detection[J]. Nano Letters, 2009, 9(3): 1132-1138.

[5] QIAN X M, PENG X H, ANSARI D O, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 2008, 26(1): 83-90.

[6] XIA Y N, XIONG Y J, LIM B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.

[7] MOSKOVITS M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3): 783-826.

[8] SMITH W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis[J]. Chemical Society Reviews, 2008, 37(5): 955-964.

[9] HUH Y S, CHUNG A J, ERICKSON D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis[J]. Microfluidics and Nanofluidics, 2009, 6(3): 285-297.

[10] BELL S E J, SIRIMUTHU N M S. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2008, 37(5): 1012-1024.

[11] WANG X X, YANG T, LI X, et al. Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition[J]. Biosensors and Bioelectronics, 2011, 26(6): 2953-2959.

[12] WANG H, HALAS N J. Mesoscopic Au “meatball” particles[J]. Advanced Materials, 2008, 20(4): 820-825.

[13] KUMAR P S, PASTORIZA-SANTOS I, et al. High-yield synthesis and optical response of gold nanostars[J].Nanotechnology, 2008, 19(1): 015606.

[14] XU F G, CUI K, SUN Y J, et al. Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing[J]. Talanta, 2010, 82(5): 1845-1852.

[15] LIU Z, YANG Z B, PENG B, et al. Highly sensitive, uniform, and reproducible surface enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Advanced Materials, 2014, 26(15): 2431-2439.

[16] CHEN S H, WANG Z L, BALLATO J, et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals[J]. Journal of the American Chemical Society, 2003, 125(52): 16186-16187.

[17] LIANG H Y, LI Z P, WANG W Z, et al. Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering[J]. Advanced Materials, 2009, 21(45): 4614-4618.

[18] KUO C H, HUANG M H. Synthesis of branched gold nanocrystals by a seeding growth approach[J]. Langmuir, 2005, 21(5): 2012-2016.

[19] LU L H, AI K L, OZAKI Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape[J]. Langmuir, 2008, 24(3): 1058-1063.

[20] WANG L, HU C, NEMOTO Y, et al. On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures[J]. Crystal Growth Dsign, 2010, 10(8): 3454-3460.

[21] YUAN H, MA W H, CHEN C C, et al. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions[J]. Chemistry of Materials, 2007, 19(7): 1592-1600.

[22] WU D J, JIANG S M, CHENG Y, et al. Fano-like resonance in symmetry-broken gold nanotube dimer[J]. Optics Express, 2012, 20(24): 26559-26567.

[23] SUN Y G, XIA Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium[J]. Journal of the American Chemical Society, 2004, 126(12): 3892-3901.

[24] LU X, TUAN H Y, CHEN J, et al. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium[J]. Journal of the American Chemical Society, 2007, 129(6): 1733-1742.

[25] RE LU E C, BLACKIE E, MEYER M, et al. Surface enhanced raman scattering enhancement factors: a comprehensive study[J]. Journal of Physics Chemical C, 2007, 111(37): 13794-13803.

李军朋, 周骏, 姜涛, 刘雁婷. 海胆状金纳米粒子表面形貌对表面增强喇曼散射特性的影响[J]. 光子学报, 2015, 44(4): 0419001. LI Jun-peng, ZHOU Jun, JIANG Tao, LIU Yan-ting. SERS Characteristics of Sea Urchin-like Gold Nanoparticles Dependent on Their Surface Morphology[J]. ACTA PHOTONICA SINICA, 2015, 44(4): 0419001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!