激光与光电子学进展, 2019, 56 (9): 090001, 网络出版: 2019-05-03   

2 μm波段掺铥倍半氧化物陶瓷激光器研究进展 下载: 1088次

Research Progress on Thulium-Doped Sesquioxide Ceramic Lasers in 2 μm Wavelength Region
作者单位
江苏师范大学物理与电子工程学院, 江苏 徐州 221116
引用该论文

司晓云, 黄海涛, 钱丽娟, 滕晓晓, 樊程祥. 2 μm波段掺铥倍半氧化物陶瓷激光器研究进展[J]. 激光与光电子学进展, 2019, 56(9): 090001.

Si Xiaoyun, Huang Haitao, Qian Lijuan, Teng Xiaoxiao, Fan Chengxiang. Research Progress on Thulium-Doped Sesquioxide Ceramic Lasers in 2 μm Wavelength Region[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090001.

参考文献

[1] Scholle K, Lamrini S, Koopmann P, et al. 2 μm Laser sources and their possible applications, frontiers in guided wave optics and optoelectronics[M]. Croatia: InTech, 2010: 471-500.

[2] Yao B Q, Shen Y J, Duan X M, et al. A 41 W ZnGeP2 optical parametric oscillator pumped by a Q-switched Ho∶YAG laser[J]. Optics Letters, 2014, 39(23): 6589-6591.

[3] Antipov O L,Eranov I D, Frolov M P, et al. 2.92 μm Cr2+∶CdSe single crystal laser pumped by a repetitively pulsed Tm3+∶Lu2O3 ceramics laser at 2.066 μm[J]. Laser Physics Letters, 2015, 12(4): 045801.

[4] 高攀, 黄见洪, 刘华刚, 等. 基于可饱和吸收体MoS2的固态Tm∶YAG被动调Q激光器[J]. 中国激光, 2018, 45(7): 0701002.

    Gao P, Huang J H, Liu H G, et al. Passively Q-switched solid-State Tm∶YAG laser with MoS2 as saturable absorber[J]. Chinese Journal of Lasers, 2018, 45(7): 0701002.

[5] 令维军, 夏涛, 董忠, 等. 基于氧化石墨烯可饱和吸收体的低阈值被动调Q锁模Tm, Ho∶LiLuF4激光器[J]. 中国激光, 2018, 45(3): 0301001.

    Ling W J, Xia T, Dong Z, et al. Passively Q-switched mode-locked low threshold Tm, Ho∶LiLuF4 laser with a graphene oxide saturable absorber[J]. Chinese Journal of Lasers, 2018, 45(3): 0301001.

[6] 王娟, 黄海洲, 黄见洪, 等. 784.9 nm和808 nm激光二极管抽运Tm/Ho键合激光器[J]. 中国激光, 2018, 45(10): 1001004.

    Wang J, Huang H Z, Huang J H, et al. 784.9 nm and 808 nm laser diode pumped Tm/Ho bonded lasers[J]. Chinese Journal of Lasers, 2018, 45(10): 1001004.

[7] Koopmann P, Peters R, Petermann K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Applied Physics B, 2011, 102(1): 19-24.

[8] Mun J H, Jouini A, Novoselov A, et al. Growth and characterization of Tm-doped Y2O3 single crystals[J]. Optical Materials, 2007, 29(11): 1390-1393.

[9] Koopmann P, Lamrini S, Scholle K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm[J]. Optics Express, 2013, 21(3): 3926-3931.

[10] Peters V, Bolz A, Petermann K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. Journal of Crystal Growth, 2002, 237/238/239: 879-883.

[11] Pirri A, Toci G, Nikl M, et al. High efficiency laser action of 1% at. Yb3+∶Sc2O3 ceramic[J]. Optics Express, 2012, 20(20): 22134-22142.

[12] Pirri A, Toci G, Patrizi B, et al. An overview on Yb-doped transparent polycrystalline sesquioxide laser ceramics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602108.

[13] Koopmann P, Lamrini S, Scholle K, et al. Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm[J]. Optics Letters, 2011, 36(6): 948-950.

[14] Schmidt A,Koopmann P, Huber G, et al. 175 fs Tm∶Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes[J]. Optics Express, 2012, 20(5): 5313-5318.

[15] Tokurakawa M, Shirakawa A, Ueda K, et al. Diode-pumped ultrashort-pulse generation based on Yb3+∶Sc2O3 and Yb3+∶Y2O3 ceramic multi-gain-media oscillator[J]. Optics Express, 2009, 17(5): 3353-3361.

[16] Kahn A, Fabrication andcharacterization of monocrystalline sesquioxide waveguide lasers[D]. Hamburg: Universitt Hamburg, 2009: 15-17.

[17] Sanghera J, Kim W, Villalobos G, et al. Ceramic laser materials[J]. Materials, 2012, 5(12): 258-277.

[18] Galina N and Raman K. Laser cooling in Yb3+∶YAG[J]. Journal of the Optical Society of America B, 2014, 31(2): 340-348.

[19] Caslavsky J L, Viechnicki D J. Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis[J]. Journal of Materials Science, 1980, 15(7): 1709-1718.

[20] Loiko P, Koopmann P, Mateos X, et al. Highly efficient, compact Tm3+∶RE2O3 (RE=Y, Lu, Sc) sesquioxide lasers based on thermal guiding[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1600713.

[21] Zelmon D E, Small D L, Page R. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm[J]. Applied Optics, 1998, 37(21): 4933-4935.

[22] Koopmann P, Lamrini S, Scholle K, et al. Long wavelength laser operation of Tm∶Sc2O3 at 2116 nm and beyond[C]∥ OSA Technical Digest (CD), 2011: ATuA5.

[23] Fornasiero L, Berner N, Dicks B, et al. Broadly tunable laser emission from Tm∶Y2O3 and Tm:Sc2O3 at 2 μm[C]∥ Advanced Solid State Lasers, 1999: WD5.

[24] Gao W L, Ma J, Xie G Q, et al. Highly efficient 2 μm Tm∶YAG ceramic laser[J]. Optics Letters, 2012, 37(6):1076-1078.

[25] Ryabochkina P A, Chabushkin A N, Kopylov Y L, et al. Two-micron lasing in diode-pumped Tm∶Y2O3 ceramics[J]. Quantum Electronics, 2016, 46(7): 597-600.

[26] Wang H, Huang H T, Liu P, et al. Diode-pumped continuous-wave and Q-switched Tm∶Y2O3 ceramic laser around 2050 nm[J]. Optical Materials Express, 2017, 7(2): 296-303.

[27] Huang H T Wang H, Shen D Y. VBG-locked continuous-wave and passively Q-switched Tm∶Y2O3 ceramic laser at 2.1 μm[J]. Optical Materials Express, 2017, 7(9): 3147-3154.

[28] Wang H, Huang H T, Wang S Q, et al. Nanosecond Tm∶Y2O3 ceramic laser passively Q-switched by a Ho∶LuAG ceramic[J]. Optical Engineering, 2018, 57(2): 026109.

[29] Kuo Y K, Birnbaum M, and Chen W. Ho:YLiF4 saturable absorber Q-switch for the 2 μm Tm,Cr∶Y3Al5O12 laser[J]. Applied Physics Letters, 1994, 65(24): 3060-3062.

[30] Schellhorn M, Hirth A, Kieleck C. Ho:YAG laser intracavity pumped by a diode-pumped Tm∶YLF laser[J]. Optics Letters, 2003, 28(20): 1933-1935.

[31] Yang X F, Huang H T, Shen D Y, et al. 2.1 μm Ho∶LuAG ceramic laser intracavity pumped by a diode-pumped Tm∶YAG laser[J]. Chinese Optics Letters, 2014, 12(12): 121405.

[32] Chen YF, Lan Y P, Chang H L. Analytical model for design criteria of passively Q-switched lasers[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 462-468.

[33] Antipov O L, Novikov A A, Zakharov N G, et al. Optical properties and efficient laser oscillation at 2066 nm of novel Tm∶Lu2O3 ceramic[J]. Optical Materials Express, 2012, 2(2): 183-189.

[34] Lagatsky A A, Antipov O L, Sibbett W. Broadly tunable femtosecond Tm∶Lu2O3 ceramic laser operating around 2070 nm[J]. Optics Express, 2012, 20(17): 19349-19354.

[35] Saarinen E J,Vasileva E, Antipov O, et al. 2 μm Tm∶Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser[J]. Optics Express, 2013, 21(20): 23844-23850.

[36] Antipov O, Novikov A, Larin S, et al. Highly efficient 2 μm CW and Q-switched Tm3+∶Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm[J]. Optics Letters, 2016, 41(10): 2298-2301.

[37] Baylam I, Canbaz F, Sennaroglu A. Dual-wavelength temporal dynamics of a gain-switched 2 μm Tm3+∶Lu2O3 ceramic laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1601208.

[38] Xu X D, Hu Z W, Li D Z, et al. First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic[J]. Optics Express, 2017, 25(13): 15322-15329.

[39] Zhou Z Y, Guan X F, Huang X X, et al. Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 μm source operating in continuous-wave and passive Q-switching regimes[J]. Optics Letters, 2017, 42(19): 3781-3784.

[40] Jing W, Loiko P, Serres J M, et al. Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm∶(Lu,Sc)2O3 transparent ceramics[J]. Optics Materials Express, 2017, 7(11): 4192-4202.

[41] Wang Y C, Jing W, Loiko P, et al. Sub-10 optical-cycle passively mode-locked Tm:(Lu2/3Sc1/3)2O3 ceramic laser at 2 μm[J]. Optics Express, 2018, 26(8): 10299-10304.

[42] Hao Z D, Zhang L L, Wang Y P, et al. 11 W continuous-wave laser operation at 2.09 μm in Tm∶Lu1.6Sc0.4O3 mixed sesquioxide ceramics pumped by a 796 nm laser diode[J]. Optics Materials. Express, 2018, 8(11): 3615-3621.

司晓云, 黄海涛, 钱丽娟, 滕晓晓, 樊程祥. 2 μm波段掺铥倍半氧化物陶瓷激光器研究进展[J]. 激光与光电子学进展, 2019, 56(9): 090001. Si Xiaoyun, Huang Haitao, Qian Lijuan, Teng Xiaoxiao, Fan Chengxiang. Research Progress on Thulium-Doped Sesquioxide Ceramic Lasers in 2 μm Wavelength Region[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!