光谱学与光谱分析, 2023, 43 (12): 3885, 网络出版: 2024-01-11  

用于爆炸火焰真温场测量的多光谱热成像仪研究

Research on Multi-Spectral Thermal Imager Explosion Flame True Temperature Field Measurment
作者单位
1 哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
2 东北林业大学机电工程学院, 黑龙江 哈尔滨 150001
摘要
温度是评估弹药热辐射毁伤的重要参数。 弹药在引爆后会在极短时间内压缩周围空气并向四周猛烈释放出大量能量, 伴随着能量释放弹药介质会急剧升温并形成火焰场, 通过测量、 分析火焰场的真温值, 便可以得到爆炸火焰的空间热辐射毁伤效应。 由于爆炸过程的强破坏性和瞬态性, 爆炸火焰的测量主要是依靠辐射测温法。 在以往研究中, 已有学者针对爆炸火焰测量研制了相应的辐射测温仪器, 但目前所研制的仪器只能测量出爆炸火焰在单波长下的亮温场, 而单波长亮温场无法实现真温值的计算。 针对这一问题, 研制了一套多光谱热成像仪, 该仪器采用多幅分光技术, 可实现爆炸火焰在同时刻、 不同波长下的分光成像, 并利用高速CCD相机进行数据采集, 最后依据多光谱辐射测温理论反演出爆炸火焰真温场。 多幅分光技术是由远距离多孔分光镜头所完成的, 该镜头主要分为两个部分: 主成像镜头和分光镜头。 主成像镜头的功能是对远距离爆炸火焰进行聚焦成像, 其所成图像经由单凸透镜汇聚到正后方的多孔分光镜头上。 多孔分光镜头内置分光光栏, 光栏上可镶嵌不同波长的窄带滤光片, 当入射光透过光栏上的窄带滤光片后, 透射光便为被测目标的单波长辐射能量。 远距离多孔分光镜头可对500 m以内的爆炸火焰进行成像, 并依据实际需求将分光光栏设计为四分光结构, 同时为方便滤光片更换将分光光栏做成了可插拔的形式。 该镜头自重约为0.75 kg, 可通过法兰片直接安装在高速CCD相机上, 完全满足野外测量要求。 为验证仪器的有效性, 对1.660 9 kg的TNT进行了爆炸火焰真温场实验。 实验结果表明: 在爆炸后0.1 ms时出现最高温度值3 251 K, 随着时间推移, 真温场逐渐扩大, 但其最高温度值在逐渐降低; 当时间为0.6 ms时, 最高温度值为2 483 K。
Abstract
Temperature is an important parameter for assessing the thermal radiation damage of the ammunition. After the detonation of the ammunition will compress the surrounding air in a very short time and violently release a large amount of energy to the surrounding area. Along with the release of energy, ammunition media will be sharply warmed up, and the formation of the flame field, by measuring and analyzing the true temperature value of the flame field, it is possible to obtain the spatial thermal radiation damage effect of the explosion flame. Due to the explosion processs strong destructive and transient nature, the measurement of the explosion flame is mainly dependent on radiation pyrometer. In previous studies, scholars have developed corresponding radiometric devices for the measurement of the explosion flame. However, the developed devices can only measure the bright temperature field of the explosion flame at a single wavelength, a single wavelength bright temperature field cannot achieve the calculation of the true temperature value. This paper developed a multi-spectral thermal imager, the imager uses multi-amplitude spectroscopy technology that can realize the explosion flame true temperature field at the same time, different wavelengths of spectral imaging, and the use of a high-speed CCD camera for data acquisition, and finally based on multi-spectral radiometric temperature theory inverse performance of the explosion flame true temperature field. The multi-amplitude spectroscopy technology is accomplished by the long-range multi-aperture spectroscopy lens, divided into two main parts: the main imaging lens and the multi-aperture spectroscopy lens. The function of the main imaging lens is to image the long-range ammunition explosion field, the image which converges through a single convex lens to the rear of the multi-aperture spectroscopy lens. The multi-aperture spectroscopy lens has a built-in spectral light bar, the light bar can be set with different wavelength narrowband filters. When the image is through the narrowband filter on the light bar, the transmitted light will be the measured target of single-wavelength radiation energy, the use of multiple single-wavelength radiation energy can be through the multi-spectral radiation thermometry theory for the calculation of the true temperature value. In this paper, the long-range multi-aperture spectroscopic lens can image the explosion flame up to 500 m, and according to the actual demand of the lens light bar design for the four-split structure, while the light bar for the convenience of filter replacement into the pluggable form. The lens weighs about 0.75 kg and can be mounted directly on the high-speed CCD camera by the flange, which fully meets the requirements of field experiments. In order to verify the validity of the instrument, the explosion flame true temperature field test was conducted on 1.660 9 kg of TNT. The test results show that the maximum temperature value is 3 251 K at 0.1 ms after the explosion, and the true temperature field gradually expands with time passing, but the corresponding maximum temperature value gradually decreases; when the time is 0.6 ms, the maximum temperature is 2 483 K.

王振涛, 戴景民, 杨森. 用于爆炸火焰真温场测量的多光谱热成像仪研究[J]. 光谱学与光谱分析, 2023, 43(12): 3885. WANG Zhen-tao, DAI Jing-min, YANG Sen. Research on Multi-Spectral Thermal Imager Explosion Flame True Temperature Field Measurment[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3885.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!