作者单位
摘要
1 哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
2 东北林业大学机电工程学院, 黑龙江 哈尔滨 150001
温度是评估弹药热辐射毁伤的重要参数。 弹药在引爆后会在极短时间内压缩周围空气并向四周猛烈释放出大量能量, 伴随着能量释放弹药介质会急剧升温并形成火焰场, 通过测量、 分析火焰场的真温值, 便可以得到爆炸火焰的空间热辐射毁伤效应。 由于爆炸过程的强破坏性和瞬态性, 爆炸火焰的测量主要是依靠辐射测温法。 在以往研究中, 已有学者针对爆炸火焰测量研制了相应的辐射测温仪器, 但目前所研制的仪器只能测量出爆炸火焰在单波长下的亮温场, 而单波长亮温场无法实现真温值的计算。 针对这一问题, 研制了一套多光谱热成像仪, 该仪器采用多幅分光技术, 可实现爆炸火焰在同时刻、 不同波长下的分光成像, 并利用高速CCD相机进行数据采集, 最后依据多光谱辐射测温理论反演出爆炸火焰真温场。 多幅分光技术是由远距离多孔分光镜头所完成的, 该镜头主要分为两个部分: 主成像镜头和分光镜头。 主成像镜头的功能是对远距离爆炸火焰进行聚焦成像, 其所成图像经由单凸透镜汇聚到正后方的多孔分光镜头上。 多孔分光镜头内置分光光栏, 光栏上可镶嵌不同波长的窄带滤光片, 当入射光透过光栏上的窄带滤光片后, 透射光便为被测目标的单波长辐射能量。 远距离多孔分光镜头可对500 m以内的爆炸火焰进行成像, 并依据实际需求将分光光栏设计为四分光结构, 同时为方便滤光片更换将分光光栏做成了可插拔的形式。 该镜头自重约为0.75 kg, 可通过法兰片直接安装在高速CCD相机上, 完全满足野外测量要求。 为验证仪器的有效性, 对1.660 9 kg的TNT进行了爆炸火焰真温场实验。 实验结果表明: 在爆炸后0.1 ms时出现最高温度值3 251 K, 随着时间推移, 真温场逐渐扩大, 但其最高温度值在逐渐降低; 当时间为0.6 ms时, 最高温度值为2 483 K。
爆炸火焰真温场 多光谱热成像仪 远距离多孔分光镜头 Explosive flame true temperature field Multi-spectral thermal imager Long-range multi-aperture spectroscopic lens 
光谱学与光谱分析
2023, 43(12): 3885
作者单位
摘要
武汉理工大学, 硅酸盐建筑材料国家重点实验室, 武汉 430070
为探究准二元铝硅玻璃硬度和抗碎裂性随组分变化的结构起源, 采用激光加热气动悬浮技术, 制备了组分为xAl2O3·(100-x)SiO2 (30≤x≤63, 摩尔分数)的系列玻璃样品。利用显微维氏硬度仪对玻璃的硬度、抗碎裂性进行了详细表征。结果表明: 随着Al2O3含量增加, 玻璃硬度逐渐升高, 于x=63时硬度最大(8.94 GPa); 而玻璃的抗碎裂性随Al2O3含量的增加呈现非线性变化, 并于x=63时出现最大的抗碎裂性(19.49 N)。结构解析发现: 随着Al2O3含量增加, 原子堆积密度和平均场键能密度的升高是导致玻璃硬度上升的原因; 存在分相的玻璃中相界面可有效提升玻璃的抗碎裂性能, 而单相均匀玻璃中Al含量的提升亦会明显提升玻璃的抗碎裂性, 这两者之间的协同和相互竞争是准二元铝硅体系玻璃抗碎裂性出现非线性变化的结构根源。莫来石相区组分的玻璃结构类似, 抗碎裂性未发生明显的变化。
铝硅酸盐玻璃 气动悬浮技术 硬度 抗碎裂性 相界面 aluminosilicate glass aerodynamic levitation technology hardness crack resistance phase interface 
硅酸盐学报
2022, 50(4): 894
作者单位
摘要
武汉理工大学, 硅酸盐建筑材料国家重点实验室, 武汉 430070
为探究过铝区碱土铝硅酸盐玻璃随碱土离子替换硬度(HV)和玻璃转变温度(Tg)的演化规律及结构起源, 采用激光加热气动悬浮技术, 制备了摩尔组成为xRO·(49-x)Al2O3·51SiO2 (x=0~16; R=Mg, Ca, Sr, Ba)的系列碱土铝硅酸盐玻璃样品。采用显微维氏硬度仪、差示扫描量热法(DSC)分别对样品的维氏硬度(HV)和玻璃转变温度(Tg)进行了表征。结果表明: RO含量固定, 随着R2+场强变大, 玻璃的HV升高, Tg下降; RO种类固定, 随着RO对Al2O3替换量的增加, 玻璃的HV和Tg均下降, 49Al2O3·51SiO2玻璃具有最高的HV (8.26 GPa)和最高的Tg (941 ℃)。结构解析发现: 玻璃网络骨架的堆积密度、平均键能、键能密度以及作为电荷平衡体的填隙离子对玻璃HV和Tg提升或削弱的相互竞争和协同作用, 是玻璃的HV和Tg随R2+的场强变化呈现反向演化、随RO对Al2O3替换呈现同向演化的结构根源。
铝硅酸盐玻璃 过铝区 玻璃转变温度 硬度 电荷平衡体 场强 堆积密度 aluminosilicate glass peraluminous field glass transition temperature hardness charge balancer field strength packing density 
硅酸盐学报
2022, 50(4): 879
作者单位
摘要
哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
变压器绝缘油以链烷烃(CnH2n+2)为主要化学成分, 在变压器长期运行过程中因电弧、 放电、 过热、 受潮等原因导致化学键逐步发生断裂, 产生与故障有关的故障判别气体(CH4, C2H2, C2H4, C2H6, CO和CO2), 因此变压器绝缘油中会溶解多组分气体, 故需要一种多组分气体的在线检测装置, 以保证变压器的正常运行。 针对电力行业装配需求, 研制基于可调谐激光吸收光谱法(TDLAS)多组分气体的在线检测装置。 针对6种故障特征气体的近红外吸收波段, 分别选取1 580, 1 654, 1 626和1 530 nm四个近红外激光器, 使用分时扫描的时分多路技术, 实现对多组分气体的分时快速顺序检测并采用波长调制技术, 消除背景气体的交叉干扰。 主要检测气体为绝缘油化学键断裂所产生的烃类化合物(CH4, C2H2, C2H4和C2H6)和碳氧化合物(CO和CO2)。 在线检测, 与变压器油气象色谱测量方法进行对比实验, 并对其进行工况稳定性测试。 实验结果表明: 乙炔浓度测量范围为0.5~1 000 μL·L-1, 范围小于5 μL·L-1时最大测量误差小于0.8, 5~1 000 μL·L-1时最大误差在6 μL·L-1以下; 甲烷、 乙烷、 乙烯的浓度测量范围为0.5~1 000 μL·L-1, 最大测量误差小于6 μL·L-1; 碳氧化合物(CO和CO2)测量范围分别为25~5 000, 25~15 000 μL·L-1, 最大测量误差分别在2与20 μL·L-1以下。 所设计的近红外TDLAS多组分气体检测装置能够用于变压器油中溶解气体的在线检测, 测量的气体浓度满足在线检测要求, 能够稳定运行且适应恶劣工况条件, 为检测变压器油中溶解气体在线测量提供了有效的实践经验。
近红外光谱 故障气体检测 多组分气体检测 TDLAS Near infrared spectroscopy Fault gases detection Multi-component gas detection TDLAS 
光谱学与光谱分析
2021, 41(12): 3712
作者单位
摘要
哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
阴极表面温度是真空弧等离子体放电过程中一个重要参数, 对真空弧等离子体的形成、 电极腐蚀预测、 热传导以及离子源的寿命都有重要影响。 真空弧离子源的阴极具有目标小, 放电过程快等特点, 其温度的测量, 对于时间分辨率和空间分辨率要求都很高, 阴极表面温度的测量技术的欠缺, 使得仅靠理论解析获得的结果难以得到验证。 并且等离子体放电过程中测量仪器极易受到弧光的影响, 如何避免放电过程中等离子体的辐射也是采用辐射法测量阴极表面温度要考虑的问题。 这无疑给其温度场的测试研究带来困难。 针对脉冲真空弧等离子体开展阴极表面温度测试实验有着重要意义, 在分析了真空弧等离子体放电特性以及背景辐射特性和等离子体放电阴极测温的实际需求, 本文基于高速CCD相机研制了一种新型的多光谱高温计。 该高温计采用单色高速CCD相机, 主要避免RGB彩色相机不能完全滤除背景辐射的弧光。 为使用单色CCD相机实现多光谱辐射测温, 设计了高温计的光学系统, 该系统采用4孔径分光系统。 将4种不同波长的滤光片嵌入到1个滤光片中。 该研究设计的高温计可用于2 000~6 000 K的等离子体温度测量。 并在中国工程物理研究院电子工程研究所进行现场测试, 测试过程中将研制的高温计, 通过外部触发形式对等离子体放电过程进行跟踪拍摄, 高温计完全拍摄到等离子体放电过程。 利用真空弧等离子体金属电极阴极放电的实测数据对高温计进行了验证。 实验结果表明, 设计的新型多光谱高温计能够用于测量真空弧等离子体放电时阴极温度场信息, 测量的温度值低于放电电极的沸点温度, 与等离子体放电过程中出现气化现象相符, 说明高温计测的是等离子体放电阴极的温度。
等离子体 金属电极放电 真温 多光谱高温计 高温测量 Plasma Discharge of metal electrode True temperature Multi-spectral pyrometer High temperature measurement 
光谱学与光谱分析
2021, 41(1): 60

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!