电光与控制, 2014, 21 (3): 84, 网络出版: 2014-03-14  

尾坐式飞行器纵向姿态的变论域分形模糊控制

Variable Universe Fractal Fuzzy PID Control for Longitudinal Attitude of Tail-Sitter UAV
作者单位
1 军械工程学院无人机工程系
2 军械工程学院学员三旅,石家庄050003
摘要
针对尾坐式飞行器垂直飞行状态下易受突风和乱流的干扰,为了提高系统的稳定性和动态性能,设计了一种变论域分形模糊PID控制器,并在分形因子中引入一个归一化误差加速度参量来反映系统响应的快慢程度。通过在分形时刻进行论域的自调整,以分形时刻系统的误差变量值作为新的误差变量论域范围,其他变量的论域范围也进行相关联的调整,从而重新激活全局的模糊规则,对PID控制器的参数进行调整,以提高系统的响应速度和控制精度。通过仿真表明,该方法不仅提高了系统的动态响应特性和稳态性能,而且具有较强的自适应能力和抗干扰能力。
Abstract
Since the tail-sitter UAV is sensitive to the interference of gusts and turbulence in vertical flight, a variable universe fractal fuzzy PID controller was designed to improve the stability and dynamic performance of the UAV, and a normalized error acceleration parameter was introduced as a fractal factor to reflect the response speed of the system.By self-tuning of the universe in the fractal moment, taking the value of error as the new universe of error, and adjusting the universe range of the other parameters, the whole fuzzy rules were activated again.The parameters of the PID controller are well tuned to improve the speed of response and control precision of the system.The simulation results reveal that the controller can not only improve the dynamic and steady performance of the system, but also has high self-adaptive ability and robustness.
参考文献

[1] 王冠林,武哲.垂直起降无人机总体方案分析及控制策略综合研究[J].飞机设计,2006(9):25-30.

    WANG G L, WU Z.Configurations and control strategy for VTOL UAVs [J].Aircraft Design, 2006(9):25-30.

[2] 段文博.可悬停双旋翼微型飞行器设计与制造[D].南京:南京航空航天大学,2008.

    DUAN W B.Design and manufacturing of a dual rotor micro aerial vehicle which can hover [D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2008.

[3] STONE R H.The T-wing tail-sitter research UAV [C]//International Powered Lift Conference, Williamburg, Virginia, 2002:1-10.

[4] 潘永平,王钦若.变论域自适应模糊PID控制器设计[J].电气自动化,2007,29(3):9-11,25.

    PAN Y P, WANG Q R.Design of adaptive fuzzy-PID controller with variable universe [J].Electrical Automation, 2007, 29(3):9-11, 25.

[5] 李洪兴.Fuzzy控制的本质与一类高精度Fuzzy控制器的设计[J].控制理论与应用,1997,14(6):868-872.

    LI H X.The essence of fuzzy control and a kind of fine controller[J].Control Theory and Applications, 1997, 14(6):868-872.

[6] DONG H Y, WEI Z H, ZHAO X G, et al.Electric pitch control system based on fuzzy control with variable region[J].Applied Mechanics and Materials, 2012, 229:2352-2356.

[7] 徐静波,徐望人.变论域分形控制研究[J].东华大学学报:自然科学版,2004,30(4):4-7.

    XU J B, XU W R.Study on fractal control via varying universe of discourse [J].Journal of Donghua University:Natural Sciences, 2004, 30(4):4-7.

[8] YESIL E, GUZELKAYA M, EKSIN I.Self tuning fuzzy PID type load and frequency controller[J].Energy Conversion and Management, 2004, 45(3):377-390.

[9] 潘湘飞,宋立忠.几种变论域模糊控制收缩因子有效性研究[J].控制工程,2008,15(s1):106-108.

    PAN X F, SONG L Z.Effectiveness of several shrinkage factors of variable universe fuzzy control[J].Control En-gineering of China, 2008, 15(s1):106-108.

[10] 田凡.电液伺服系统模糊PID控制仿真与试验研究[D].太原:太原理工大学, 2010.

    TIAN F.Fuzzy PID control simulation and test study of electro-hydraulic servo system[D].Taiyuan:Taiyuan University of Technology, 2010.

[11] 杨思亮,徐世杰.柔性航天器大角度姿态机动的变论域分形控制[J].哈尔滨工业大学学报,2011,43(11):136-140.

    YANG S L, XU S J.Variable universe fractal control of flexible multi-body spacecraft for large angle attitude maneuver[J].Journal of Harbin Institute of Technology, 2011, 43(11):136-140.

张迪洲, 陈自力, 胡永江, 邸彦佳. 尾坐式飞行器纵向姿态的变论域分形模糊控制[J]. 电光与控制, 2014, 21(3): 84. ZHANG Di-zhou, CHEN Zi-li, HU Yong-jiang, DI Yan-jia. Variable Universe Fractal Fuzzy PID Control for Longitudinal Attitude of Tail-Sitter UAV[J]. Electronics Optics & Control, 2014, 21(3): 84.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!