强激光与粒子束, 2014, 26 (3): 039001, 网络出版: 2014-03-31  

超声速转子叶片非定常引射器流场特性数值模拟

Numerical simulation of flow mechanism of unsteady supersonic rotor-vane ejector
作者单位
1 空气动力学国家重点实验室, 四川 绵阳 621000
2 中国空气动力研究与发展中心 设备设计及测试技术研究所, 四川 绵阳 621000
摘要
采用计算流体力学方法,结合适当的边界条件,对超声速转子叶片非定常引射器进行了模拟。从结果可以看出:此类引射器内流态复杂,主气流出口斜激波干扰现象明显,叶片设计参数对引射器性能影响很大。叶片尾部的膨胀波有效诱导了被引射气流,在短距离内增强了气流混合,湍流效应对引射器性能的影响较小;叶片可维持自旋转,提升叶片转速可增强引射效率。最后,对引射器内的流动机理进行了探讨。
Abstract
Computational fluid dynamics (CFD) with proper boundary conditions was used to compare the performance of different states for capacity of entropy production control, or decrease of the pressure loss. Numerical results show that the flow field in supersonic rotor-vane is complex, phenomenon of interference between oblique shocks is obvious. The expansion shock of rotor tail induces the secondary flow and enhances the mixing of two fluids of different energy at short distance. Comparing mixing by gas-shock with shear between two fluids, the effect of turbulence is weak, even ignorable. The position and shape of the vane, such as the tail part, leading edge, the height of leading part, has an important effect on the flow regimes and efficiency of ejector. The compression-ratio and entrainment-ratio of the ejector is in proportion to rev of rotor. The rotor and vane could be free rotary with proper setting angle of vane. Furthermore, investigation on flow mechanism and efficiency of ejector is given.
参考文献

[1] Weber H E. Shock wave engine design[M]. New York: John Wiley and Sons Inc, 1995.

[2] Scott T. Re-examination of the crypto-steady pressure-exchanger (Virtual turbo machine)[R]. AIAA Paper, 2001-2927.

[3] Garris C A. A new concept for a hubless rotary jet[R]. AIAA Paper, 1991-1903.

[4] Amin S M, Garris C A. An experimental investigation of a non-steady flow thrust augmenter[R]. AIAA Paper, 1995-2802.

[5] Hong W J, Garris C A. Non-steady flow ejector technology applied to refrigeration with environmental benefits[R]. AIAA Paper, 2000-0726.

[6] Hong W J, Alhussan K. The supersonic rotor-vane pressure-exchange ejector[R]. AIAA Paper, 2001-0858.

[7] Zhang H F, Garris C A. A comparative study of flow induction by pressure exchange[R]. AIAA Paper, 2004-2343.

[8] Hong W J, Alhussan K, Zhang H F. A novel thermally driven rotor-vane pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency[J]. Energy, 2004, 29: 2331-2345.

[9] Alhussan K. Study the effect of changing inlet area ratio of a supersonic pressure-exchange ejector[R]. AIAA Paper, 2005-0519.

[10] Ababneha A K, Garris C A. Investigation of the mach number effects on fluid-to-fluid interaction in an unsteady ejector with a radial-flow diffuser[J]. Jordan Journal of Mechanical and Industrial Engineering, 2009, 3(2): 131-140.

[11] 廖达雄, 任泽斌, 余永生, 等.等压混合引射器设计与实验研究[J].强激光与粒子束, 2006, 18(5): 728-732.(Liao Daxiong, Ren Zebin, Yu Yongsheng, et al. Design and experiment of constant pressure mixing ejector. High Power Laser and Particle Beams, 2006, 18(5): 728-732)

[12] 陈健,王振国,吴继平,等.等截面超-超引射器流场结构及引射性能[J]. 强激光与粒子束, 2012, 24(6): 1301-1305.(Chen Jian, Wang Zhenguo, Wu Jiping, et al. Flow structure and performance of constant-area, supersonic-supersonic ejector. High Power Laser and Particle Beams, 2012, 24(6): 1301-1305)

[13] 代玉强,丁美霞,谈文虎,等.利用波转子实现气体膨胀制冷技术[J]. 大连理工大学学报, 2010, 50(6): 888-895.(Dai Yuqiang, Ding Meixia, Tan Wenhu, et al. Wave rotors used for expansion refrigeration technology. Journal of Dalian University of Technology, 2010, 50(6): 888-895)

[14] 雷艳, Mueller N. 通流式气波转子性能试验研究[J]. 北京工业大学学报, 2012, 38(4): 607-613.(Lei Yan, Mueller N. Performance test of a through-flow wave rotor. Journal of Beijing University of Technology, 2012, 38(4): 607-613)

[15] 丛成华,易星佑,吕金磊,等.声学风洞风扇段流场特性数值模拟[J].推进技术, 2011, 32(5): 741-745.(Cong Chenghua, Yi Xingyou, Lü Jinlei, et al. Numerical study about characteristics of aero-acoustics pilot wind tunnel’s fan section. Journal of Propulsion Technology, 2011, 32(5): 741-745)

[16] Gilbert G B, Hill P G. Analysis and testing of two-dimensional slot nozzle ejectors with variable area mixing sections[R]. NASA-CR-2251, 1973.

丛成华, 彭强, 易星佑, 郑娟. 超声速转子叶片非定常引射器流场特性数值模拟[J]. 强激光与粒子束, 2014, 26(3): 039001. Cong Chenghua, Peng Qiang, Yi Xingyou, Zheng Juan. Numerical simulation of flow mechanism of unsteady supersonic rotor-vane ejector[J]. High Power Laser and Particle Beams, 2014, 26(3): 039001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!