红外技术, 2016, 38 (8): 659, 网络出版: 2016-09-12  

低温下(-213℃)补偿机构的设计

The Design of Compensation Mechanism at Low Temperature of -213℃
作者单位
1 中科院南京天文仪器研制中心,江苏南京 210042
2 中国科学院大学,北京 100039
3 合肥工业大学,安徽合肥 230009
4 中科院南京天文仪器有限公司,江苏南京 210042
摘要
为了满足光学平台在低温下(-213℃)的光学设计稳定性要求,本文设计了一种温度补偿结构,基于材料热膨胀系数随温度变化的原理对该结构进行了理论计算和实验验证。该结构通过控制螺栓的预紧力保证连接件可靠,并使殷钢板在低温下处于自由伸缩状态;并利用在低温下因瓦合金变形极小补偿不锈钢变形带来的误差。其光学系统的在低温下的指标RMS≤?/10,?=632.8 nm。理论表明,在低温下因瓦合金的最大变形量为0.24884mm,不锈钢的最大变形量为2.910mm;实验结果表明:在常温和低温下用干涉仪测得的光学系统的面形精度分别为RMS=?/13、RMS=?/12,?=632.8 nm。在低温下能较好满足光学设计稳定性要求。
Abstract
In order to meet the requirements of the optical stability of the optical platform at low temperature of -213℃, the paper designs a temperature compensation structure. Based on the theory of material coefficient of thermal expansion changes with temperature, and the theoretical calculation and experimental verification are carried out on the structure. The structure can ensure the reliability of the connecting piece by controlling the pre-tightening force of the bolt, and make the invar alloy in a state of free expansion at low temperature. And under the low temperature, the invar alloy’s small deformation can compensate some deformation error of stainless steel. The optical system index RMS≤1/10?,and ?= 632.8 nm in low temperature. Theory suggests that the maximum deformation of invar alloy is 0.24884mm at low temperature, and the maximum deformation of stainless steel is 3.001 mm; Under the normal and low temperature, the experimental results show that the surface accuracy of the optical system measured by the optical interferometer is RMS=1/13?, RMS=1/12?, respectively. At low temperature it can well satisfy the stability of the optical design requirements.
参考文献

[1] 李娟, 王英瑞, 张宏. 一种机械被动式无热补偿方法[J]. 红外与激光工程, 2006(4): 476-480.

    LI Juan, WANG Yingrui, ZHANG Hong. New passive compensating mechanism for athermalisation[J]. Infrared and Laser Engineering,2006(4): 476-480.

[2] 白玉琢, 元延婷, 等. 机械补偿式红外温度自适应光机系统的设计[J]. 红外技术, 2012(11): 652-656.

    BAI Yuzhuo, YUAN Yanting, et al. Design of a mechanical passive athermal infared lens[J]. Infrared Technology, 2012(11): 652-656.

[3] 黄其圣, 张勇, 胡鹏浩, 等. 温度变化对机械零件配合精度的影响[J]. 机械设计, 2001(3): 45-47.

    HUANG Qisheng, ZHANG Yong, HU Penghao, et al. The influence of temperature change on the precision of mechanical parts[J]. Design of Machinery, 2001(3): 45-47.

[4] 王元清, 武延民, 石永久, 等. 低温对结构钢材主要力学性能影响的试验研究[J]. 铁道科学与工程学报, 2005(1): 1-4.

    WANG Yuanqing, WU Yanming, SHI Yongjiu, et al. Experiment study on the main mechanical parameters of building steel under low temperature[J]. Journal of Railway Science and Engineering, 2005(1):1-4.

[5] 操龙飞. 金属材料的热膨胀特性研究[D]. 武汉: 武汉科技大学,2013.

    CAO Feilong. Thermal expansion properties of metallic materials[D].Wuhan: Wuhan University of Science and Technology, 2005.

[6] 佟晓静. 4J36 低膨胀合金及其工艺性[J]. 机械, 2002(S1): 205-207.

    TONG Xiaojing. Low expansion alloy of 4J36 and its technology[J].Machinery, 2002(S1): 205-207.

[7] 乔玉鹏. Invar 36 合金的加工性及低应力加工工艺[D]. 大连: 大连理工大学, 2010.

    QIAO Yupeng. The machinability and low-stress processing of invar 36 alloy [D]. Dalian: Dalian University of Technology, 2010.

[8] 尹波. 殷钢厚板材料激光焊接技术实验研究[D]. 大连: 大连理工大学, 2009.

    YI Bo. Experimental Study on Laser Welding of Thick Invar 36 Alloy Plate[D]. Dalian: Dalian University of Technology, 2009.

[9] 濮良贵. 机械设计[M]. 北京: 高等教育出版社, 2005.

    PU Linggui. Design of Machinery[M]. Beijing: Higher Education Press, 2005.

[10] 周坤, 刘美红. 法兰螺栓连接中螺栓预紧力的计算和控制方法分析[J]. 新技术新工艺, 2010 (8): 26-28.

    ZHOU Kun, LIU Meihong. Analysis of calculation and control methods of the bolt preload in the flange bolts connection[J]. New Technology & New Process, 2010(8): 26-28.

[11] 宋黎娟, 支光明. 螺栓组连接的受力分析及禁忌[J]. 科技创新与应用, 2012, 22: 12-13.

    SONG Lijuan, ZHI Guangming. Stress analysis and taboo of bolt group connection[J]. Technology Innovation and Application, 2012,22: 12-13.

[12] 赵曼. 控制螺栓联接预紧力的方法[J]. 水利电力机械, 2006(7):36-38.

    ZHAO Man. The method of controlling bolt connection pre-tightening force[J]. Water Conservancy & Electric Power Machinery, 2006(7):36-38.

[13] 王晖, 杨慧香, 吕长松. 普通螺栓组(R 和T 作用)联接预紧力计算方法[J]. 吉林工学院学报(自然科学版), 1999(3): 39-41.

    WANG Hui, YANG Huixiang, LV Changsong. The calculation method of the pre-tightening force of the common bolt group (R and T)[J]. Journal of Jilin Institute of Technology, 1999(3): 39-41.

[14] 刘鸿文. 简明材料力学[M]. 北京: 高等教育出版社, 1995.

    LIU Hongming. Condensed Materials Mechanics[M]. Beijing:Higher Education Press, 1995.

[15] 陈昀, 李明光, 张艳红, 等. 因瓦合金发展现状及应用前景[J]. 机械研究与应用, 2009(4): 9-11.

    CHEN Yun, LI Mingguang, ZHANG Yanhong, et al. The development actuality and application prospect of invar alloy[J].Mechanical Research & Application, 2009(4): 9-11.

[16] 王超. 顺磁性元素改善因瓦合金性能研究[D]. 西安: 西安建筑科技大学, 2013.

    WANG Chao. Study of Improving Invar Alloy Performance by Paramagnetism Element[D]. Xi’an: Xi’an University of Architecture and Technology, 2013.

[17] 蔡波. 含Mg、Ce 的Fe-Ni-Co 因瓦型低膨胀合金组织和性能的研究[D]. 北京: 钢铁研究总院, 2013.

    CAI Bo. Investigations on the structures and properties of Fe-Ni-Co invar-type low expansion alloy with addition of magnesium or cerium[D]. Beijing: Powered by Page Admin CMS, 2013.

[18] 徐明舟, 王建军, 刘春明. 新型无Ni 高N 奥氏体不锈钢的低温变形行为[J]. 金属学报, 2011(10): 1335-1341.

    XU Mingzhou, WANG Jianjun LIU Chunming. Low temperature deformation behavior of high-nitrogen nickel-free austenitic stainless steels[J]. Acta Metallurgica Sinica, 2011(10): 1335-1341.

李冬冬, 胡明勇, 吴海燕, 赵金标. 低温下(-213℃)补偿机构的设计[J]. 红外技术, 2016, 38(8): 659. LI Dongdong, HU Mingyong, WU Haiyan, ZHAO Jinbiao. The Design of Compensation Mechanism at Low Temperature of -213℃[J]. Infrared Technology, 2016, 38(8): 659.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!