Photonics Research, 2015, 3 (5): 05000265, Published Online: Jan. 6, 2016   

Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle Download: 502次

Author Affiliations
1 Key Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract
In this paper, we develop a theoretical method based on ray optics to calculate the optical force and torque on a metallo-dielectric Janus particle in an optical trap made from a tightly focused Gaussian beam. The Janus particle is a 2.8 μm diameter polystyrene sphere half-coated with gold thin film several nanometers in thickness. The calculation result shows that the focused beam will push the Janus particle away from the center of the trap, and the equilibrium position of the Janus particle, where the optical force and torque are both zero, is located in a circular orbit surrounding the laser beam axis. The theoretical results are in good agreement qualitatively and quantitatively with our experimental observation. As the ray-optics model is simple in principle, user friendly in formalism, and cost effective in terms of computation resources and time compared with other usual rigorous electromagnetics approaches, the developed theoretical method can become an invaluable tool for understanding and designing ways to control the mechanical motion of complicated microscopic particles in various optical tweezers.
References

[1] H. L. Guo and Z. Y. Li, “Optical tweezers technique and its applications,” Sci. China Phys. Astro. & Mech. 56, 2351–2360 (2013).

[2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[3] M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335– 1346 (1997).

[4] E. Qu, H. L. Guo, C. H. Xu, Z. L. Li, M. Yuan, B. Y. Cheng, and D. Z. Zhang, “Kinetics of microtubule -AtMAP65-1 bond studied with dual-optical tweezers,” Jpn. J. Appl. Phys. 46, 7514–7518 (2007).

[5] A. K. Rai, A. Rai, A. J. Ramaiya, R. Jha, and R. Mallik, “Molecular adaptations allow dynein to generate large collective forces inside cells,” Cell 152, 172–182 (2013).

[6] J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).

[7] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales,” Phys. Rev. Lett. 89, 050601 (2002).

[8] J. K hler, R. Ghadiri, S. I. Ksouri, Q. Guo, E. L. Gurevich, and A. Ostendorf, “Generation of microfluidic flow using an optically assembled and magnetically driven microrotor,” J. Phys. D 47, 505501 (2014).

[9] G. B. Liao, P. B. Bareil, Y. L. Sheng, and A. Chiou, “Onedimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16, 1996– 2004 (2008).

[10] S. Mohanty, “Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization,” Lab Chip 12, 3624–3636 (2012).

[11] L. Lin, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).

[12] L. Huang, H. L. Guo, K. L. Li, Y. H. Chen, B. H. Feng, and Z. Y. Li, “Three dimensional force detection of gold nanoparticles using backscattered light detection,” J. Appl. Phys. 113, 113103 (2013).

[13] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of lasertrapped microscopic particles,” Nature 395, 621–635 (1998).

[14] N. J. Jenness, R. M. Erb, B. B. Yellen, and R. L. Clark, “Magnetic and optical manipulation of spherical metal-coated Janus particles,” Proc. SPIE 7762, 776227 (2010).

[15] H. Wang, S. Bhaskar, J. Lahann, and Y. G. Lee, “Optical trapping of Janus particles,” Proc. SPIE 7038, 703813 (2008).

[16] S. Nedev, S. Carretero-Palacios, P. Kühler, T. Lohmüller, A. S. Urban, L. J. E. Anderson, and J. Feldmann, “An optically controlled microscale elevator using plasmonic Janus particles,” ACS Photonics 2, 491–496 (2015).

[17] F. S. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as lightmills in optical traps,” New J. Phys. 8, 216 (2006).

[18] L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O. G. Schmidt, and G. Cuniberti, “Fuel-free locomotion of Janus motors: magnetically induced thermophoresis,” ACS Nano 7, 1360–1367 (2013).

[19] M. Yoshida and J. Lahann, “Smart nanomaterials,” ACS Nano 2, 1101–1107 (2008).

[20] T. Nisisako, T. Torii, T. Takahashi, and Y. Takizawa, “Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system,” Adv. Mater. 18, 1152–1156 (2006).

[21] C. J. Behrend, J. N. Anker, B. H. McNaughton, and R. Kopelman, “Microrheology with modulated optical nanoprobes (MOONs),” J. Magn. Magn. Mater. 293, 663–670 (2005).

[22] D. A. White, “Vector finite element modeling of optical tweezers,” Comput. Phys. Comm. 128, 558–564 (2000).

[23] D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942–2957 (2008).

[24] J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).

[25] S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19, 16526–16541 (2011).

[26] L. Lin, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys. 108, 073110 (2010).

[27] F. Borghese, P. Denti, and R. Saija, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100, 163903 (2008).

[28] A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).

[29] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 54–59 and 628–633.

Jing Liu, Chao Zhang, Yiwu Zong, Honglian Guo, Zhi-Yuan Li. Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle[J]. Photonics Research, 2015, 3(5): 05000265.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!