激光与光电子学进展, 2003, 40 (8): 51, 网络出版: 2006-06-27  

光子晶体制备方法最新进展 下载: 541次

Recent progress in the fabrication of photonic crystals
作者单位
中国科学院上海光学精密机械研究所中日合作光子技术实验室,上海,201800
摘要
光子晶体是一种介电常数随空间呈周期性变化的材料.具有光子带隙结构(Photonic Band Gap)的光子晶体,可以调制光子的状态模式,其潜在用途十分广泛.本文介绍了光子晶体的制备方法及其进展.
Abstract
Photonic crystals have emerged as a new kind of microstructure materials whose dielectric constant changes alternately following the coordinates of space. Analogous to the normal atomic crystals, photonic crystals with "photonic bandgap" can modulate the modes of electromagnetic waves in much the same way that semiconductors control the properties of electrons. There are a lot of methods to fabricate photonic crystals. Here in the recent progress for preparation of photonic crystals is reviewed.
参考文献

[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58:2059~2062

[2] Joan S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58:2486~2489

[3] Brown E R, Parker C D, Yablonovitch E. Radiation properties of a planar antenna on a photonic-crystal substrate. J. Opt.Soc. Am. B., 1993, 10(2):404~407

[4] Brown E R, Mcmahon O B. High zenithal directivity from a dipole antenna on a photonic crystal. Appl. Phys. Lett., 1996, 68:1300~1302

[5] Yablonovitch E. Photonic band-gap structures. J. Opt. Soc. Am. B, 1993, 10(2):283~295

[6] Takashi Yamasaki, Tetsuo Tsutsu. Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres. Appl. Phys. Lett., 1998, 72(16):1957~1959

[7] Blanco A, L6pez C, Mayoral R et al.. CdS photoluminescence inhibition by a photonic structure. Appl. Phys. Lett., 1998,73(13): 1781~1783

[8] Sandhya Gupta, Gary Turtle, Mihail Sigalas et al.. Infrared filters using metallic photonic band gap structures on flexible substrates. Appl. Phys. Lett., 1997, 71(17):2412~2414

[9] Lei Xinya, Li Hua, Ding Feng et al.. Novel application of a perturbed photonic crystal: High-quality filter. Appl. Phys. Lett.,1997, 71(20):2889-2891

[10] Joannopoulos J D et al.. Photonic Crystals (princetun press,new Jersey, 1995)

[11] Shawn-Yu Lin, Edmund Chow, Vince Hietala et al.. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science, 1998, 282:274~276

[12] Foresi J S, Villeneuve P R, Ferrera J et. al.. Photonic-bandgap micrecavities in optical waveguides. Nature, 1997, 390:143~ 145

[13] Leung K M, Liu Y F. Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. Phys.Rev. Lett., 1990, 65(41):2646~2649

[14] Ze Zhang, Sashi Satpathy. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations. Phys. Rev. Lett., 1990, 65(21):2650~2653

[15] Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered-cubic case employing nouspherical atoms. Phys.Rev. Lett., 1991, 67(17):2295~2298

[16] Fan Shanghui, Villeneuve P R, Meade R D et al.. Design of three-dimansional photonic crystals at submicron lengthscales.Appl. Phys. Lett., 1994, 65:1466-1468

[17] Ho K M, Chan C T, Soukoulis C M. Existence of s photonic gap in periodic dielectric structures. Phys. Rev. Lett., 1990,65(25):3152~3155

[18] Joannopoulos J D, Fan S, Mekis A et al.. Photonic Crystals and Light Localization in the 21st Century, (NATO Science Seriec C 563 edited by Soukoulis C M)

[19] Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett., 1989, 63(18):1950~1953

[20] Yablonovitch E, Gmitte T J, Meade R D et al.. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 1991,67(24):3380~3383

[21] McIntosh K A, Mahoney L J, Molvar K M et al.. Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands. Appl. Phys. Lett., 1997, 70:2937~2939

[22] LinS Y, Fleming J G, Hetherington D L et al.. A three-dimensional photonic crystal operating at infrared wavelengthe.Nature, 1998, 394:251~253

[23] Susumu Noda, Katsuhiro Tomoda, Noritsugu Yamamoto. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 2000, 289:604~606

[24] Ozbay E, Michel E, Tuttle G et al.. Micromachined millimeter-wave photonic band-gap crystals. Appl. Phys. Lett., 1994,64(16):2059~2061

[25] Ozbay E, Temelkuran B, Sigalas M et al.. Defect structures in metallic photonic crystals. Appl. Phys. Lett., 1996, 69:3797~3799

[26] Fleming J G, Lin S Y, E1-Kady I et al.. All-metallic three-dimensional photonic crystals with a large infrared bandgap.Nature, 2002, 417:52~55

[27] Fleming J G, Lin S Y. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95. Opt. Lett., 1999, 24:49~51

[28] Mei Dongbin, Liu Hongguang, Cheng Bingying et al.. Visible and near-infrared silica colloidal crystals and photonic gaps.Phys. Rev. B, 1998, 58(1):35~38

[29] Larsen A E, Grier D G. Melting of metastable crystallites in charge-stabilized colloidal suspensions. Phys. Rev. Lett., 1996,76(20):3862~3865

[30] Burns M M, Fournier J M, Golovchenko J A. Optical matter: crystallization and binding in intense optical fields. Science, 1990,249:749~754

[31] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating. Nature, 1997, 389:948~951

[32] Wickman H H, Korley J N. Colloid crystal self-organization and dynamics at the air/water interface. Nature, 1998, 393:445~ 447

[33] Cheng Zhengdong, Russel W B, Chalkin P M. Controlled growth of hard-sphere colloidal crystals. Nature, 1999, 401:893

[34] Velev O D, Jede T A, Lobo R F et al.. Porous silica via colloidal crystallization. Nature, 1997, 389:447~448

[35] Alvaro Blanco, Emmanuel Chomski, Serguei Grabtchak et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405:437~440

[36] Judith E G, Wijnhoven J, Willem L V. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281:802

[37] Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281:538

[38] Joannopoulos J D. Self-assembly lights up. Nature, 2001, 414:257~258

[39] Vlasov Y A, Bo Xiangzheng, Sturm J C et al.. On-chip matural assembly of silicon photonic bandgap crystals. Nature, 2001, 414:289

[40] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fuorescence microscopy. Science, 1990, 248:73~76

[41] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt.Lett., 1991, 16:1780~1782

[42] Cumpston B H, Ananthavel S P, Barlow S et al.. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398:51

[43] Hong-Bo Sun, Tomokazu Tanaka, Kenji Takada et al.. Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett., 2001, 79(10):1411~1413

[44] Hong-Bo Sun, Vygantas Mizeikis, Ying Xu et al.. Microcavities in polymeric photonic crystals. Appl. Phys. Lett., 2001, 79(1):1~3

[45] Shoji Maruo, Osamu Nakamura, Satoshi Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 1997, 22(2):132~134

[46] Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka et al.. Finer features for functional microdevices. Nature, 2001, 412:697~698

[47] Lee W, Pruzinsky S A, Braun P V. Multi-photon polymerization of waveguide strctures within three-dimensional photonic crystals. Adv. Mater., 2002, 14:271~274

[48] Taton A, Norris D J. Defective promise in photonics. Nature, 2002, 416:685~686

[49] Katsumi Yoshino, Yuki Shimoda, Yoshiaki Kawagishi et al.. Temmperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photohic crystal. Appl. Phys. Lett., 1999, 75(7):932~934

[50] Holtz J H, Asher S A, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389:829~832

[51] Wen Weijia, Wang Ning, Ma Hongru et al.. Field induced structural transition in mesocrystsllites. Phys. Rev. Lett., 1999,82(21):4248~4251

[52] Guido Mertens, Thorsten Roder, Ralf Schweins. Shift of the photonic band gap in two photohic crystal/liquid crystal composites.Appl. Phys. Lett. , 2002, 80(11):1885~1997

[53] Meng Q B, Fu C H, Hayami S et al.. Effects of external electric filed upon the photonic band structure in synthetic opal infiltrated with liquid crystal. J. Appl. Phys., 2001, 89(10):5794~5796

[54] Busch K, John S. Liquid-crystal photonic-band-gap materials:the tunable electromagnetic vacuum. Phys. Rev. Lett., 1999,83:967~970

[55] Leonard S W, van Driel H M, Schilling J et al.. Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection. Phys. Rev. B, 2002, 66:161102~161104

[56] Campbell M, Sharp D N, Harrison M T et al.. Fabriantion of photonic crystals for the visible spectrum by holographic lithography.Nature, 2000, 404:53~56

[57] Winfree E, Liu Furong, Wenzler L A et al.. Design and self-assembly of two-simensional DNA crystals. Nature, 1998, 394:539~544

杨旅云, 邱建荣. 光子晶体制备方法最新进展[J]. 激光与光电子学进展, 2003, 40(8): 51. 杨旅云, 邱建荣. Recent progress in the fabrication of photonic crystals[J]. Laser & Optoelectronics Progress, 2003, 40(8): 51.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!