光学与光电技术, 2017, 15 (6): 73, 网络出版: 2018-01-09   

1.3~5 μm宽波段红外成像光学系统设计

Design of a 1. 3~5 μm Wide Wave Band Infrared Imaging Optical System
作者单位
华中光电技术研究所—武汉光电国家实验室, 湖北 武汉 430223
摘要
宽波段红外成像技术可以获取丰富的波段信息,在目标识别和频谱分析中具有独特的优势。设计了一种1.3~5 μm宽波段短中波红外光学系统,该光学系统采用二次成像设计,包括7块透镜和2片反射镜,其中使用了2片硅非球面和1片硒化锌基底衍射面用以校正像差和色差。利用光学设计软件给出了系统的光学参数和二维外形结构图,并且对其像质和冷反射进行了系统分析。该系统可以实现在工作波段1.3~5 μm宽波段中成像,其F数为2,满足100%冷光阑效率。该系统结构紧凑,像质较好,能够实现宽波段成像要求。
Abstract
Wide-infrared imaging technology has the technical advantages in spectrum analysis and identifying target, and it can obtain plentiful wave band information. In this paper, a 1. 3~5 μm wide wave band infrared optical system is designed with a double imaging zoom structure which including 7 lens and 2 reflectors, and the color difference is corrected by using 2 silicon aspheric lens and 1 ZnSe diffraction lens. The modulation transfer function (MTF) curves and the cold reflection of the system are investigated by using the optical design software. The analysis results indicate that the optical system whose F is 2 can image in the 1.3~5 μm wide wave band, and the cold shield efficiency is 100% satisfied. The structure of the designed optical system is simple and reliable, and is able to meet the design and use requirements of wide wave band imaging in a high image quality.
参考文献

[1] 兰卫华, 万敏, 王凯, 等. 中波红外多光谱成像技术研究[J]. 光电工程, 2012, 39(2): 59-62.

    LAN Wei-hua, WAN Min, WANG Kai, et al. The study of MWIR multispectral imaging technology[J]. Opto- Electronic Engineering, 2012, 39(2): 59-62.

[2] 刘娟娟, 郭帮辉, 吴宏圣, 等. 300-1100 nm宽波段光学系统设计[J]. 光子学报, 2010, 39(10): 1766-1769.

    LIU Juan-juan, GUO bang-hui, WU Hong-sheng, et al. Design of 300~1100 nm board-waveband optical system[J]. Acta Photonica Sinica, 2010, 39(10): 1766-1769.

[3] 张葆, 崔恩坤, 洪永丰, 等. 红外双波段双视场共光路光学系统[J]. 光学 精密工程, 2015, 23(2): 395-401.

    ZHANG Bao, CUI En-kun, HONG Yong-feng, et al. Infrared MWIR/LWIR dual-FOV common -path optical system[J]. Optics and Precision Engineering, 2015, 23(2): 395-401.

[4] 李勇, 马力, 李升辉, 等. 小型化全自动中波红外光学系统设计[J]. 光学与光电技术, 2015, 13(4): 65-69.

    LI Yong, MA Li, LI Sheng-hui, et al. Optical system design of miniaturization and full-automatic MW thermal imager[J]. Optics and Optoelectronic Technology, 2015, 13(4): 65-69.

[5] 王文生. 现代光学系统设计[M]. 北京: 国防工业出版社, 2016.

    WANG Wen-sheng. Contemporary optical system design[M]. Beijing: National Defense Industry Press, 2006.

[6] Weimin Shi. Long wave infrared zoom projector thermal analysis and compensation[J]. Optical Engineering, 2000, 39(10): 2705-2714.

[7] Akram Muhammad Nadeem. Design of a multiple-field-of-view optical system for 3~5 μm infrared focal plane arrays[J]. Optical Engineering, 2003, 42(6): 1704-1714.

[8] 李升辉, 杨长城. 折/衍射混合红外光学系统的消热差设计[J]. 光学与光电技术, 2006, 4(4): 1-3.

    LI Sheng-hui, YANG Chang-cheng. Athermal design for infrared hybrid refractive/diffractive optical system[J]. Optics and Optoelectronic Technology, 2006, 4(4): 1-3.

[9] Akram Muhammad Nadeem. Design of a multiple-field-of-view optical system for 3~5 μm infrared focal plane arrays[J]. Optical Engineering, 2003, 42(6): 1704-1714.

[10] 刘洋, 安晓强. 制冷型红外热成像冷反射现象的分析与控制[J]. 光学学报, 2012, 32(2): 274-280.

    LIU Yang, AN Xiao-qiang. Analysis and control of narcissus effect of cooling IR focal plane system[J]. Acta Optica Sinica, 2012, 32(2): 274-280.

[11] 张良. 凝视型红外光学系统中的冷反射现象[J]. 红外与激光工程, 2006, 35(zl): 8-11.

    ZHANG Liang. Narcissus in staring infrared optical system[J]. Infrared and Laser Engineering, 2006, 35(zl): 8-11.

马力, 李勇, 左腾. 1.3~5 μm宽波段红外成像光学系统设计[J]. 光学与光电技术, 2017, 15(6): 73. MA Li, LI Yong, ZUO Teng. Design of a 1. 3~5 μm Wide Wave Band Infrared Imaging Optical System[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2017, 15(6): 73.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!